

ANNUAL COMPLIANCE REPORT

(Combined Approval 60CA581273)

2020/21

Contact: David Hilton - Manager Assets and Operations

LICENCE COMPLIANCE REPORT 2020/21

PREFACE

This report is prepared by Western Murray Irrigation Limited (WMI) as part of licence requirements which WMI holds with the NSW Government - Department of Planning Industry and Environment - Water (DPIE Water) and the Environmental Protection Authority (EPA). It discusses our annual compliance performance, including the environmental performance and impacts of the works and infrastructure owned or controlled by WMI and the quality of irrigation wastewater discharged from works and infrastructure.

Our environmental programs, which aim to exceed our environmental obligations, demonstrate our commitment to ensuring that our operations do not impact negatively on the environment.

Western Murray Irrigation Limited 2020/21 Annual Compliance report

Contents

STATEMENT OF APPROVAL 60CA581273 – COMPLIANCE OF CON	DITIONS2
Take of Water	2
MW0655-00001	
MW2452-00001	
Metering Calibration Certificates	3
Water Management Works	12
MW3192-00001	
MW0491-00001	
Monitoring and Recording	
MW2338-00001	
MW2336-00001	
MW2337-00001	
MW0482-00001	
MW2339-00001	12
Reporting	12
MW0051-00001	
Other Conditions - Monitoring and Recording	12
DK5891-00004	
60CA581273	13
Schedule 1 - Requirements	13
Reporting and Notification Requirements:	13
Submission of an Annual Compliance Report.	13
Condition 1	13
Condition 2	13
Condition 2.1	13
Condition 2.2	14
Statement of Compliance	20
Statement of Compliance	20
Statement of Compliance Condition 2.3 Presentation of Data and Analyses	20 20
Statement of Compliance	20 20
Statement of Compliance	202121
Statement of Compliance Condition 2.3 Presentation of Data and Analyses Condition 2.4 Condition 2.5 Condition 2.6	20212122
Statement of Compliance Condition 2.3 Presentation of Data and Analyses	
Statement of Compliance Condition 2.3 Presentation of Data and Analyses Condition 2.4 Condition 2.5 Condition 2.6	
Statement of Compliance Condition 2.3. Presentation of Data and Analyses	
Statement of Compliance Condition 2.3 Presentation of Data and Analyses	
Statement of Compliance Condition 2.3. Presentation of Data and Analyses	

Condition 2.10	29
Condition 2.11	29
Condition 2.12	29
Condition 2.13	30
Reporting on Salinity and Saltload	33
Condition 2.14	
Condition 2.15	
Condition 2.16	
Reporting Groundwater Requirements	37
Condition 2.17	
Attachment 2- p.1	
Attachment 2, p.2 - Condition 1	
Attachment 2, p.2 - Condition 2.	49
Attachment 2, p.2 - Condition 3.	49
Attachment 2, p.2 –Condition 4	49
Attachment 2, p.2 – Condition 5	50
Attachment 2, p.2 – Condition 6.	56
Attachment 2, p.3	57
Quality Assurance for Monitoring & Reporting	57
Condition 3.	
Presentation of Data	57
Condition 4.	57
Environment Protection and Management Requirements	57
Discharge of Noxious Aquatic weeds	57
Condition 5.	
Discharge of Blue-Green Algae	58
Condition 6.	58
Basin Salinity Management Strategy	
Condition 7	58

INTRODUCTION

WMI supplies water to customers in its three irrigation areas, Buronga, Coomealla and Curlwaa under Combined Approval Number 60CA581273. The Statement of Approval has a date of effect 01 July 2004 and expiry of 23 February 2030. Details of the Statement of Approval can be found at: https://waterregister.waternsw.com.au/water-register-frame.

Operating licence for Western Murray Irrigation was renewed and amended for a period of ten years on 24th January 2018, published in NSW Government Gazette No 10 of 25January 2018:

Government Notices

WATER MANAGEMENT ACT 2000

Sections 123 and 124

RENEWAL AND AMENDMENT OF OPERATING LICENCE

NOTICE is given that, pursuant to sections 123 and 124 of the *Water Management Act 2000*, the Governor of New South Wales has, on 24th January 2018, renewed and amended the Operating Licence of Western Murray Irrigation Limited, for a period of ten years. The renewed Operating Licence commences on the day this notice is published in the NSW Government Gazette.

[n2018-247]

This Compliance Report details the monitoring and reporting activities undertaken by WMI during the 2020/21 financial year to comply with the water management licences. It also outlines irrigation development data that explains the trends in monitoring results.

All mapping details are using projected coordinate system: GDA-1994- MGA-Zone 54.

<u>STATEMENT OF APPROVAL 60CA581273 – COMPLIANCE OF CONDITIONS</u>

Take of Water

MW0655-00001

All water supply works authorised by this approval take water in compliance with the conditions of the access licence under which water is being taken.

MW2452-00001

Water is taken through metering equipment that meet the following requirements:

- A. The metering equipment accurately measures and records the flow of all water taken through the water supply work authorised by this approval.
- B. Status of metering equipment compliance with the current Australian Standard AS 4747: 'Meters for non-urban supply':
 - Buronga pump station meter (1) is pattern approved to NMI-M-10; installed/commissioned 05May21.
 - Coomealla pump station meters (1-6) are pattern approved to NMI-M-10; installed/commissioned 01July2021.
 - Curlwaa pump station meters (1-2) are pattern approved to NMI-M-10. Installed/commissioned 12July21(1) and 12Juny21(2)

Commissioning of Telemetry for DAS – WMI are working with WaterNSW to commission our existing telemetry in accordance with 'Marketing engagement policy for metering and telemetry; Part 3 – Assessment process for 'other telemetry systems'.

- C. All metering equipment is sited and installed at a place in the pipe, between the water source and the first discharge outlet. There is no flow of water into or out of the pipe, between the water source and the metering equipment.
- D. The metering equipment is always operated and maintained in a proper and efficient manner. Calibration certificates follow.

Metering Calibration Certificates

Buronga Pump Station.

SIEMENS

swonga nais Pumps

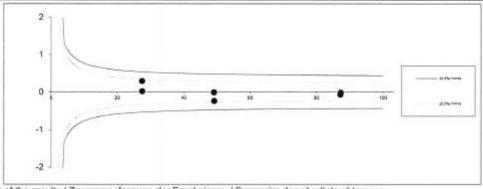
Factory Calibration Certificate / Werkskalibrierungszertifikat / Certificat d'étalonnage usine

Topic / Thema / Sujet: SITRANS F Flowmeter / Durchflussmessgerät / Débitmètre

Object / Betreff / Objet:

Siemens order / Siemensauftrag / Commande Siemens	- :	0001894029/000090	
Flowmeter type / Durchflussmessgerättyp / Type de débitmètre		Sitrans FM MAG5100 W	
Sensor diameter / Messaufnehmer-Nennweite / Diametre nominal	13	DN 600 (24")	
Product order No. / Produktbestellnummer / N° de référence d'appareil	:	FDK-083X13685	
System serial No. / System Seriennummer / N* de série du systeme		974403H280	
Sensor serial No. / Messaufnehmer Seriennummer / N° de série de capteur		475403H340	

Technical data / Technische Daten / Données techniques:


Calibration factor / Kalibrierungsfaktor / Facteur d'étalonnage	1	247.8485993	
Calibration medium / Kalibriermedium / Moyen de calibration	1	Water / Wasser / Eau	
Calibrated full scale flow / Kalibrierter Messbereichsendwert / Fin de plage de mesure étalonnée	3	2800 m ³ /h / 12328.033 US gpm	
Calibration rig / Kalibrierstand / Plate-forme d'étalonnage	1	Banc HNU 3	

Standards / Normen / Normes:

Reference meter method (reference meter calibrated according to ISO 4185-1980) / Referenzmessgerätmethode (Referenzgerät kalibriert laut ISO 4185-1980) / Méthode avec compteur de référence (étalonné suivant ISO 4185-1980)

Results / Ergebnisse / Résultats:

Point # Messpunkt or Point mesure n*	Flowrate Durchfluss Débit	Fluid ten	perature	Reference	Reference flow value		ichflussmessgerätausgan	g / Sortie de débitmètre
		Flüssigkeitstemperatur Température du fluide			Referenz Durchflusswert Débit de référence		wrate nenge / Débit	Error Fehler / Erreur
	[%]	[°C]	[°F]	[m ³ /h]	[US gpm]	[m³/h]	[US gpm]	[%]
1	87	15.8	60.4	2445.06	10765.26	2444.66	10763.52	-0.02
2	27	15.9	60.6	769.17	3386.56	769.29	3387.10	0.02
3	27	15.9	60.6	767.86	3380.76	770.05	3390.42	0.29
4	49	15.8	60.4	1376.46	6060.36	1373.18	6045.94	-0.24
5	49	15.8	60.4	1374.06	6049.82	1373.96	6049.35	-0.01
6	87	15.9	60.6	2 441.80	10750.90	2440.06	10743.28	-0.07

Summary of the results / Zusammenfassung der Ergebnisse: / Sommaire des résultats obtenus : :

Siemens SAS	Issued by / Erstellt von / émis par	Date / Datum / Date	
Etablissement de Haguenau	Bon	2020/10/22	

Coomealla Pump Station - Pump A

SIEMENS Pump A

Factory Calibration Certificate / Werkskalibrierungszertifikat / Certificat d'étalonnage usine

Topic / Thema / Sujet: SITRANS F Flowmeter / Durchflussmessgerät / Débitmètre

Object / Betreff / Objet:

Siemens order / Siemensauftrag / Commande Siemens : 0001894029/000190
Flowmeter type / Durchflussmessgerättyp / Type de débitmètre : Sitrans FM MAG5100 W

Nominal sensor diameter / Messaufnehmer-Nennweite / Diamètre nominal de capteur : DN 500 (20")

Product order No. / Produktbestellnummer / N° de référence d'appareil : FDK-083X13539

System serial No. / System Seriennummer / N° de série du systeme : 982003H280

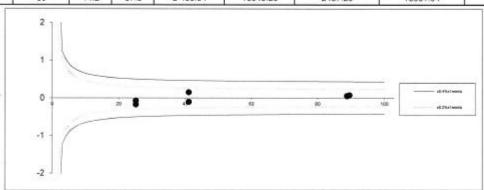
Sensor serial No. / Messaufnehmer Seriennummer / N° de série de capteur : 318602H019

Technical data / Technische Daten / Données techniques:

Calibration factor / Kalibrierungsfaktor / Facteur d'étalonnage : 239,2740657

Calibration medium / Kalibriermedium / Moyen de calibration : Water / Wasser / Eau

Calibrated full scale flow / Kalibrierter Messbereichsendwert / Fin de plage de mesure : 2800 m³/h / 12328.033 US gpm


Calibration rig / Kalibrierstand / Plate-forme d'étalonnage : Banc HNU 3

Standards / Normen / Normes:

Reference meter method (reference meter calibrated according to ISO 4185-1980) / Referenzmessgerätmethode (Referenzgerät kalibriert laut ISO 4185-1980) / Methode avec compteur de référence (étalonné suivant ISO 4185-1980)

Results / Ergebnisse / Résultats:

Point # Messpunkt nr Point mesure n*	Flowrate Durchfluss D6bit	Fluid ten	nperature	Reference	Reference flow value		chflussmessgerätausgan	g / Sortie de débitmètr
		Flüssigkeitstemperatur Température du fluide		Referenz Durchflusswert Débit de référence			wratë nenge / Dëbit	Error Fehler / Erreur
	[%]	[,C]	['F]	[m³/h]	[US gpm]	[m³/h]	[US gpm]	[%]
1	90	14.2	57.6	2506.29	11034.86	2507.99	11042.33	0.07
2	25	14.2	57.6	703.80	3098.73	703.32	3096.63	-0.07
3	25	14.2	57.6	703.42	3097.09	702.21	3091.72	-0.17
4	41	14.2	57.6	1149.30	5060.21	1150.98	5067.63	0.15
5	41	14.2	57.6	1149.11	5059.39	1147.93	5054.16	-0.10
6	89	14.2	57.6	2 485.94	10945.26	2487.25	10951.04	0.05

Summary of the results / Zusammenfassung der Ergebnisse: / Sommaire des résultats obtenus : :

Siemens SAS	Issued by / Erstellt von / émis par	Date / Datum / Date	
Etablissement de Haguenau	Bon	2020/10/26	

Factory Calibration Certificate / Werkskalibrierungszertifikat / Certificat d'étalonnage usine

Topic / Thema / Sujet: SITRANS F Flows

SITRANS F Flowmeter / Durchflussmessgerät / Débitmètre

Object / Betreff / Objet:

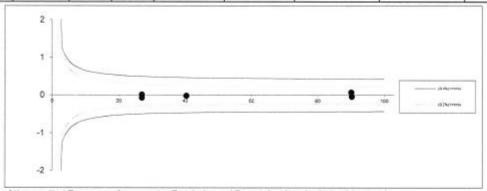
Siemens order / Siemensauftrag / Commande Siemens : 0001894029/000190
Flowmeter type / Durchflussmessgerättyp / Type de débitmètre : Sitrans FM MAG5100 W
Nominal sensor diameter / Messaufnehmer-Nennweite / Diamètre nominal de capteur : DN 500 (20")

Product order No. / Produktbestellnummer / N° de référence d'appareil : FDK-083X13539
System serial No. / System Seriennummer / N° de série du systeme : 982203H280
Sensor serial No. / Messaufnehmer Seriennummer / N° de série de capteur : 474703H340

Technical data / Technische Daten / Données techniques:

Calibration factor / Kalibrierungsfaktor / Facteur d'étalonnage : 241.5720851
Calibration medium / Kalibriermedium / Moyen de calibration : Water / Wasser / Eau

Calibrated full scale flow / Kalibrierter Messbereichsendwert / Fin de plage de mesure étalonnée : 2800 m³/h / 12328.033 US gpm


Calibration rig / Kalibrierstand / Plate-forme d'étalonnage : Banc HNU 3

Standards / Normen / Normes:

Reference meter method (reference meter calibrated according to ISO 4185-1980) / Referenzmessgerätmethode (Referenzgerät kalibriert laut ISO 4185-1980) / Méthode avec compleur de référence (étalonné suivant ISO 4185-1980)

Results / Ergebnisse / Résultats:

Point # Messpunkt nr Point mesure n*	Flowrate	Fluid temperature Flussigkeitstemperatur Température du fluide		Reference flow value		Flowmeter output / Ou	chflussmessgerätausgan	g / Sortie de débitmètre
	Durchfluss Débit				Referenz Durchflusswert Débit de référence		wrate nenge / Débit	Error Fehler / Erreur
	[%]	[,C]	[*F]	[m³/h]	[US gpm]	[m ³ /h]	(US gpm)	[%]
1	90	17.0	62.6	2521.40	11101.39	2523.07	11108.73	0.07
2	27	17.0	62.6	756.12	3329.09	755.62	3326.89	-0.07
3	27	17.0	62.6	755.53	3326.51	755.62	3326.91	0.01
4	40	17.0	62.6	1130.68	4978.23	1130.44	4977.17	-0.02
5	40	17.0	62.6	1129.10	4971.26	1128.81	4970.02	-0.02
6	90	17.0	62.6	2 525.73	11120.46	2524.60	11115.46	-0.04

Summary of the results / Zusammenfassung der Ergebnisse: / Sommaire des résultats obtenus : ;

Siemens SAS	Issued by / Erstellt von / émis par	Date / Datum / Date	
Etablissement de Haguenau	Bon	2020/10/26	

Pump C

Factory Calibration Certificate / Werkskalibrierungszertifikat / Certificat d'étalonnage usine

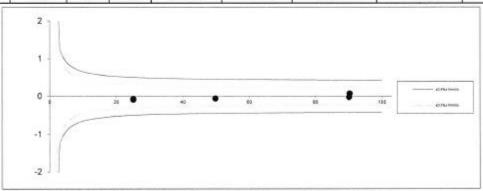
Topic / Thema / Sujet:

SITRANS F Flowmeter / Durchflussmessgerät / Débitmètre

Object / Betreff / Objet:

Siemens order / Siemensauftrag / Commande Siemens : 0001894029/000190
Flowmeter type / Durchflussmessgerättyp / Type de débitmètre : Sitrans FM MAG5100 W
Nominal sensor diameter / Messaufnehmer-Nennweite / Diamètre nominal de capteur : DN 500 (20")
Product order No. / Produktbestellnummer / N° de référence d'appareil : FDK-083X13539
System serial No. / System Seriennummer / N° de série du systeme : 982303H280
Sensor serial No. / Messaufnehmer Seriennummer / N° de série de capteur : 475003H340

Technical data / Technische Daten / Données techniques:


Calibration factor / Kalibrierungsfaktor / Facteur d'étalonnage : 237.8848719
Calibration medium / Kalibriermedium / Moyen de calibration : Water / Wasser / Eau
Calibrated full scale flow / Kalibrierter Messbereichsendwert / Fin de plage de mesure étalonnée : 2800 m³/h / 12328.033 US gpm
Calibration rig / Kalibrierstand / Plate-forme d'étalonnage : Banc HNU 3

Standards / Normen / Normes:

Reference meter method (reference meter calibrated according to ISO 4185-1980) / Referenzmessgerätmethode (Referenzgerät kalibriert laut ISO 4185-1980) / Méthode avec compteur de référence (étalonné suivant ISO 4185-1980)

Results / Ergebnisse / Résultats:

Point # Messpunkt or Point mesure n*	Flowrate	Fluid ten	nperature	Reference	Reference flow value		chflussmessgerätausgan	g / Sortie de débitmèt
	Durchfluss Débit	Flüssigkeitstemperatur Température du fluide		21212023232	Referenz Durchflusswert Débit de référence		wrate nenge / Débit	Error Fehler / Erreur
	[%]	[°C]	[*F]	[m³/ħ]	[US gpm]	[m ³ /h]	[US gpm]	[%]
1	90	14.4	57.9	2526.92	11125.71	2528.71	11133.56	0.07
2	25	14.5	58.1	702.36	3092.39	701.86	3090.21	-0.07
3	25	14.5	58.1	702.51	3093,07	701.90	3090.38	-0.09
4	50	14.5	58.1	1395.95	6146.18	1395.12	6142.54	-0.06
5	50	14.5	58.1	1395.11	6142.50	1394.25	6138.71	-0.06
6	90	14.7	58.5	2 521.65	11102.49	2521.16	11100.33	-0.02

Summary of the results / Zusammenfassung der Ergebnisse: / Sommaire des résultats obtenus : :

Siemens SAS	Issued by / Erstellt von / émis par	Date / Datum / Date	
Etablissement de Haguenau	Pfaff	2020/10/26	

Pump D

Factory Calibration Certificate / Werkskalibrierungszertifikat / Certificat d'étalonnage usine

Topic / Thema / Sujet:

SITRANS F Flowmeter / Durchflussmessgerät / Débitmètre

Object / Betreff / Objet:

Siemens order / Siemensauftrag / Commande Siemens : 0001894029/000190
Flowmeter type / Durchflussmessgerättyp / Type de débitmètre : Sitrans FM MAG5100 W
Nominal sensor diameter / Messaufnehmer-Nennweite / Diamètre nominal de capteur : DN 500 (20")
Product order No. / Produktbestellnummer / N* de référence d'appareil : FDK-083X13539
System serial No. / System Seriennummer / N* de série du systeme : 982503H280

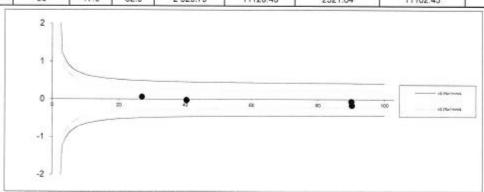
Sensor serial No. / Messaufnehmer Seriennummer / N° de série de capteur Technical data / Technische Daten / Données techniques:

Calibration factor / Kalibrierungsfaktor / Facteur d'étalonnage : 238.9135762

Calibration medium / Kalibriermedium / Moyen de calibration : Water / Wasser / Eau

Calibrated full scale flow / Kalibrierter Messbereichsendwert / Fin de plage de mesure étalonnée : 2800 m³/h / 12328.033 US gpm

Calibration rig / Kalibrierstand / Plate-forme d'étalonnage : Banc HNU 3


Standards / Normen / Normes:

Reference meter method (reference meter calibrated according to ISO 4185-1980) / Referenzmessgerätmethode (Referenzgerät kalibriert laut ISO 4185-1980) / Méthode avec compteur de référence (étalonné suivant ISO 4185-1980)

474403H340

Results / Ergebnisse / Résultats:

333370000000000000000000000000000000000	Flowrate	Fluid ten	nperature	Reference	flow value	Flowmeter output / Du	chflussmessgerätausg an	g / Sortie de débitmêtr
	Durchfluss Débit	ss Flüssigkeitstemperatur Température du fluide		Referenz Durchflusswort Débit de référence		Flo Durchflussr	Error Fehler / Erreur	
	[%]	[°C]	[°F]	[m ³ /h]	[US gpm]	[m³/h]	[US gpm]	[%]
1	90	17.0	62.6	2521.40	11101.39	2519.87	11094.64	-0.06
2	27	16.9	62.4	756.12	3329.09	756.58	3331.12	0.06
3	27	17.0	62.6	755.53	3326.51	755.97	3328.43	0.06
4	40	17.0	62.6	1130.68	4978.23	1130.37	4976.87	-0.03
5	40	17.0	62.6	1129.10	4971.26	1128.86	4970.23	-0.02
6	90	17.0	62.6	2 525.73	11120.46	2521.64	11102.43	-0.16

Summary of the results / Zusammenfassung der Ergebnisse: / Sommaire des résultats obtenus :

Siemens SAS	Issued by / Erstellt von / émis par	Date / Datum / Date	
Etablissement de Haguenau	Bon	2020/10/26	

Pump E

Factory Calibration Certificate / Werkskalibrierungszertifikat / Certificat d'étalonnage usine

Topic / Thema / Sujet: SITRANS F Flowmeter / Durchflussmessgerät / Débitmètre

Object / Betreff / Objet:

Siemens order / Siemensauftrag / Commande Siemens : 0001894029/000190
Flowmeter type / Durchflussmessgerättyp / Type de débitmètre : Sitrans FM MAG5100 W
Nominal sensor diameter / Messaufnehmer-Nennweite / Diamètre nominal de capteur : DN 500 (20")

Product order No. / Produktbestellnummer / N° de référence d'appareil : FDK-083X13539

System serial No. / System Seriennummer / N° de série du systeme : 982603H280

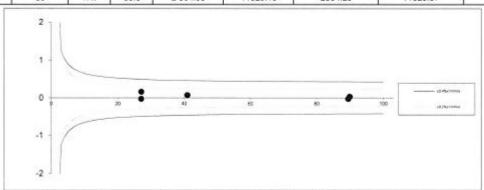
Sensor serial No. / Messaufnehmer Seriennummer / N° de série de capteur : 474603H340

Technical data / Technische Daten / Données techniques:

Calibration factor / Kalibrierungsfaktor / Facteur d'étalonnage : 242.1660215

Calibration medium / Kalibriermedium / Moyen de calibration : Water / Wasser / Eau

Calibrated full scale flow / Kalibrierter Messbereichsendwert / Fin de plage de mesure étalonnée 2800 m³/h / 12328.033 US gpm


Calibration rig / Kalibrierstand / Plate-forme d'étalonnage : Banc HNU 3

Standards / Normen / Normes:

Reference meter method (reference meter calibrated according to ISO 4185-1980) / Referenzmessgerätmethode (Referenzgerät kalibriert laut ISO 4185-1980) / Methode avec compteur de référence (étalonné suivant ISO 4185-1980)

Results / Ergebnisse / Résultats:

Point#	Flowrate	Fluid ten	nperature	Reference	flow value	Flowmeter output / Du	chflussmessgerätausgan	g / Sortie de débitmètre
Messpunkt nr Point mesure n*	Durchfluss Débit		stemperatur re du fluide	Referenz Durchflusswert Débit de référence		wrate nenge / Débit	Error Fehler / Erreur	
Г	[%]	[°C]	[°F]	[m ³ /h]	[US gpm]	[m³/h]	[US gpm]	[%]
1	90	17.7	63.9	2515.72	11076.38	2516.37	11079.24	0.03
2	27	17.8	64.0	757.84	3336.65	757.64	3335.79	-0.03
3	27	17.7	63.9	758.80	3340.90	760.02	3346.26	0.16
4	41	17.7	63.9	1145.68	5044.28	1145.46	5047.69	0.07
5	41	17.7	63.9	1145.28	5042.52	1146.03	5045.82	0.07
6	89	17.7	63.9	2 504.99	11029.13	2504.29	11026.07	-0.03

Summary of the results / Zusammenfassung der Ergebnisse: / Sommaire des résultats obtenus ::

Siemens SAS	Issued by / Erstellt von / émis par	Date / Datum / Date	
Etablissement de Haguenau	Pfaff	2020/10/26	

Coomealla Pump Station - Pump F

SIEMENS

Pump F

Factory Calibration Certificate / Werkskalibrierungszertifikat / Certificat d'étalonnage usine

Topic / Thema / Sujet:

SITRANS F Flowmeter / Durchflussmessgerät / Débitmètre

Object / Betreff / Objet:

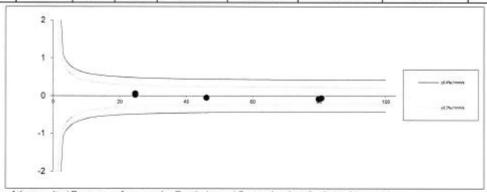
Siemens order / Siemensauftrag / Commande Siemens : 0001894029/000180
Flowmeter type / Durchflussmessgerättyp / Type de débitmètre : Sitrans FM MAG5100 W
Sensor diameter / Messaufnehmer-Nennweite / Diamètre nominal : DN 350 (14*)
Product order No. / Produktbestellnummer / N* de référence d'appareil : FDK-083X13536
System serial No. / System Seriennummer / N* de série du systeme : 979503H280
Sensor serial No. / Messaufnehmer Seriennummer / N* de série de capteur : 473903H340

Technical data / Technische Daten / Données techniques:

Calibration factor / Kalibrierungsfaktor / Facteur d'étalonnage : 88.79692363

Calibration medium / Kalibriermedium / Moyen de calibration : Water / Wasser / Eau

Calibrated full scale flow / Kalibrierter Messbereichsendwert / Fin de plage de mesure étalonnée : 1700 m³/h / 7484.871 US gpm


Calibration rig / Kalibrierstand / Plate-forme d'étalonnage : Banc HNU 3

Standards / Normen / Normes:

Reference meter method (reference meter calibrated according to ISO 4185-1980) / Referenzmessgerätmethode (Referenzgerät kalibriert laut ISO 4185-1980) / Méthode avec compteur de référence (étalonné suivant ISO 4185-1980)

Results / Ergebnisse / Résultats:

Point # Messpunkt nr Point mesure n*	Flowrate	Fluid ten	perature	Reference	flow value	Flowmeter output / Du	chflussmessgerätausgian	g / Sortie de débitmètre
	Ourchfluss Débit [%]	- Control of the Cont		Referenz Durchflusswert Débit de référence		Flor Durchflussr	Error Fehler / Erreur	
		(°C)	[°F]	[m³/h]	[US gpm]	[m ³ /h]	[US gpm]	[%]
1	81	15.9	60.6	1371.13	6036.90	1370.34	6033.41	-0.06
2	25	15.8	60.4	418.97	1844.66	419.21	1845.73	0.06
3	25	15.8	60.4	419.07	1845.12	419.22	1845.76	0.03
4	46	15.8	60.4	783.60	3450.08	783.24	3448.51	-0.05
5	46	15.8	60.4	783.69	3450.48	783.26	3448.61	-0.05
6	80	15.8	60.4	1 357.65	5977.57	1356.62	5973.00	-0.08

Summary of the results / Zusammenfassung der Ergebnisse: / Sommaire des résultats obtenus : :

Siemens SAS	Issued by / Erstellt von / émis par	Date / Datum / Date	
Etablissement de Haguenau	Bonamy	2020/10/22	

The measured values are within the specified limits / Die gemessenen Werte liegen innerhalb der Toleranzen / Les résultats de mesure se trouvent dans les tolérances définies

Curlwaa Pump Station – Main.

SIEMENS

Curluaa Main. Meter,

Factory Calibration Certificate / Werkskalibrierungszertifikat / Certificat d'étalonnage usine

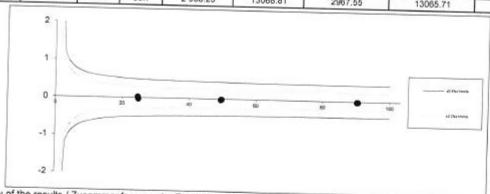
Topic / Thema / Sujet:

SITRANS F Flowmeter / Durchflussmessgerät / Débitmètre

Object / Betreff / Objet:

Siemens order / Siemensauftrag / Commande Siemens		
Flowmeter type / Durable	- 2	0001937932/000010
Flowmeter type / Durchflussmessgerättyp / Type de débitmètre	;	Sitrans FM MAG5100 W
Sensor diameter / Messaufnehmer-Nennweite / Diamètre nominal		DN 700 (28")
Product order No. / Produktbestellnummer / N° de référence d'appareil		FDK-083X13686
System serial No. / System Seriennummer / N° de série du systeme	- 1	918903H480
Sensor serial No. / Messaufnehmer Seriennummer / N° de série de capteur		244803H500

Technical data / Technische Daten / Données techniques:


Calibration factor / Kalibrierungsfaktor / Facteur d'étalonnage Calibration medium / Kalibriermedium / Moyen de calibration Calibrated full scale flow / Kalibrierter Messbereichsendwert / Fin de plage de mesure	•	405.7660443 Water / Wasser / Eau
craininee	:	6000 m3/h / 26417.211 US gpm
Calibration rig / Kalibrierstand / Plate-forme d'étalonnage	1	Banc HNU 4

Standards / Normen / Normes:

Reference meter method (reference meter calibrated according to ISO 4185-1980) / Referenzmessgerätmethode (Referenzgerät kalibriert laut ISO 4185-1980) / Méthode avec compteur de référence (étalonné suivant ISO 4185-1980)

Results / Ergebnisse / Résultats:

Point # Messpunkt nr Point mesure n°	Durchfluss	rrate Fluid temperature Reference flow value				Flowmeter output / Duchflussmessgerätausgang / Sortie de débitmé			
	Dábit				Referenz Durchflusswert Débit de référence		wrate	Error	
	[%]	[°C]	[°F]	[m ³ /h]	[US gpm]	[m³/h]	nenge / Débit	Fehler / Erreur	
1	91	15.2	59.4	5431.35	23913.53		[US gpm]	[%]	
2	25	15.2	59.4	1477.86		5430.31	23908.93	-0.02	
3	25	15.3	59.5	-	6506.83	1478,15	6508.09	0.02	
4	90	15.3	5.5.15.	1488.65	6554.35	1488.22	6552.44	-0.03	
5		37.77	59.5	5415.24	23842.58	5414.25	23838.22	-0.02	
5	50	15.4	59.7	2979.20	13117.02	2979.02	13116.24	The latest and the la	
6	49	15.4	59.7	2 968.25	13068.81	2967.55	13065.71	-0.01	

Summary of the results / Zusammenfassung der Ergebnisse: / Sommaire des résultats obtenus : :

Sigmone CAC				
Siemens SAS	Issued by / Erstellt von / émis par	Date / Datum / Date		
Etablissement de Haguenau	Bon	2021/03/22		

⁻ The measured values are within the specified limits / Die gemessenen Werte liegen innerhalb der Toleranzen / Les résultats de mesure se trouvent dans les tolérances définies

Curlwaa Pump Station - By-pass

SIEMENS

Curluaa Tower Bypass

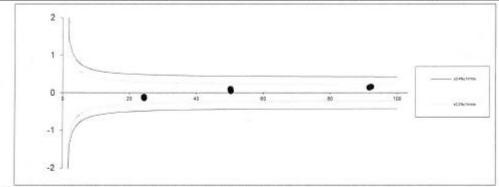
Factory Calibration Certificate / Werkskalibrierungszertifikat / Certificat d'étalonnage usine

Topic / Thema / Sujet: SITRANS F Flowmeter / Durchflussmessgerät / Débitmètre

Object / Betreff / Objet:

Siemens order / Siemensauftrag / Commande Siemens		0001894029/000140	
Flowmeter type / Durchflussmessgerättyp / Type de débitmètre		Sitrans FM MAG5100 W	
Sensor diameter / Messaufnehmer-Nennweite / Diametre nominal	100	DN 250 (10")	
Product order No. / Produktbestellnummer / N° de référence d'appareil	100	FDK-083X13683	
System serial No. / System Seriennummer / N° de série du systeme		978303H280	

Technical data / Technische Daten / Données techniques:


Calibration factor / Kalibrierungsfaktor / Facteur d'étalonnage	10	40.56126624	
Calibration medium / Kalibriermedium / Moyen de calibration		Water / Wasser / Eau	
Calibrated full scale flow / Kalibrierter Messbereichsendwert / Fin de plage de mesure étalonnée		900 m³/h / 3963 US gpm	
Calibration rig / Kalibrierstand / Plate-forme d'étalonnage		Banc HNU 3	

Standards / Normen / Normes:

Reference meter method (reference meter calibrated according to ISO 4185-1980) / Referenzmessgerátmethode (Referenzgerát kalibriert laut ISO 4185-1980) / Méthode avec compteur de référence (étalonné suivant ISO 4185-1980)

Results / Ergebnisse / Résultats:

Point #	Flowrate	Fluid ten	nperature	Reference flow value Flo Reference Durchflusswert Debit de référence		Flowmeter output / Du	Flowmeter output / Duchflussmessgerätausgang / Sortie de débitn						
Messpunkt nr Point mesure n*	Durchfluss Debit	3, 3 to 1 to 1 to 1 to 1	stemperatur ne du fluide				wrate nenge / Débit	Error Fehler / Erreur					
	[%]	[°C]	[°F]	[m ³ /h]	[US gpm]	[m³/h]	[US gpm]	[%]					
111	92	15.9	60.6	825.82	3635.99	826.99	3641.12	0.14					
2	24	15.8	60.4	219.64	967.06	219.33	965.69	-0.14					
1 3	24	15.9	60.6	219.31	965.60	219.08	964.60	-0.10					
4	50	15.9	60.6	451.65	1988.54	452.09	1990.49	0.10					
5 5	50	15.8	60.4	452.59	1992.71	452.82	1993.70	0.05					
-6	92	15.8	60.4	830.34	3655.86	831.66	3661.68	0.16					

Summary of the results / Zusammenfassung der Ergebnisse: / Sommaire des résultats obtenus ::

Siemens SAS	Issued by / Erstellt von / émis par	Date / Datum / Date	
Etablissement de Haguenau	Bon	2020/10/08	

Water Management Works

MW3192-00001

Government-provided metering equipment is not installed on any of WMI water supply works authorised by this approval, any water taken using the works is metered as detailed at MW2452-00001above.

MW0491-00001

All works authorised by this approval remain in use; there are presently no future plans to decommission the works.

Monitoring and Recording

MW2338-00001

The metered usage is recorded electronically at least every 15 minutes and stored on WMI servers; historical data can be accessed back at least 10 years.

MW2336-00001

The purpose for which water is taken is based on the WMI Crop Report. It is not feasible to create a record each time water is used for type, area, dates of planting and harvesting of each individual owner's crop.

MW2337-00001

The following information is recorded electronically for each 15-minute period that all water is taken:

- A. Time, date, volume of water, start and end times and flowrate.
- B. The access licence number under which the water is taken; also, our order system records individual customer orders; each customer meter is read each quarter.
- C. The approval number under which the water is taken.
- D. Volume of water taken for domestic consumption and/or stock watering is not recorded separately; this is recorded on customer metered outlets.

MW0482-00001

A water meter is installed on all water supply works authorised by this approval, the meter reading is recorded at least every 15 minutes.

MW2339-00001

All works are metered and fitted with a data logger. The metered records are sent directly to WaterNSW every 15 minutes and daily to MDBA via telemetry; Historical records are also recorded on WMI servers.

Reporting

MW0051-00001

WMI are not aware any breaches of the conditions on this approval. There were several administrative errors discovered on the new 'Statement of Approval'; a marked-up copy of the 'Statement of Approval' was attached to 2017/18 Annual Compliance Report, these modifications have not been updated on the current statement of approval.

Other Conditions - Monitoring and Recording

DK5891-00004

Monitoring and Reporting has been carried out as specified in the 'Western Murray Irrigation Limited Monitoring and Reporting Plan for 60CA581273', dated 16 March 2018, as below.

WMIL – MONITORING AND REPORTING PLAN FOR COMBINED APPROVAL 60CA581273

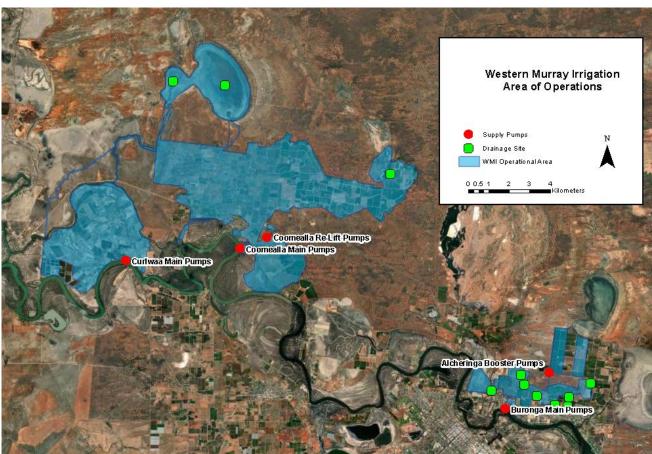
Schedule 1 - Requirements

The Approval Holder of 60CA 581273 has provided all data in the format detailed in each specific requirement of the Monitoring and Reporting Plan, unless otherwise authorised by the DPIE-Water. The data is to be submitted to the nominated officer within DPIE - Water.

Reporting and Notification Requirements:

Submission of an Annual Compliance Report.

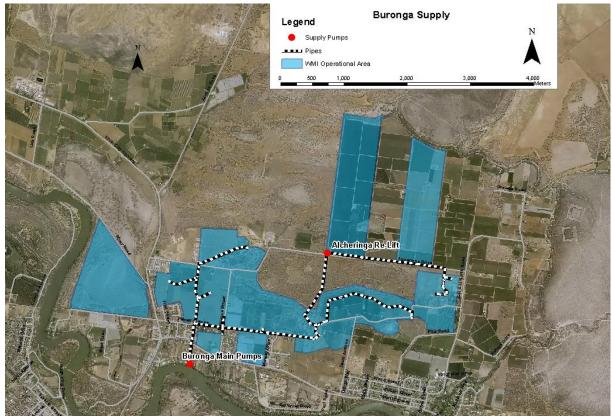
Condition 1

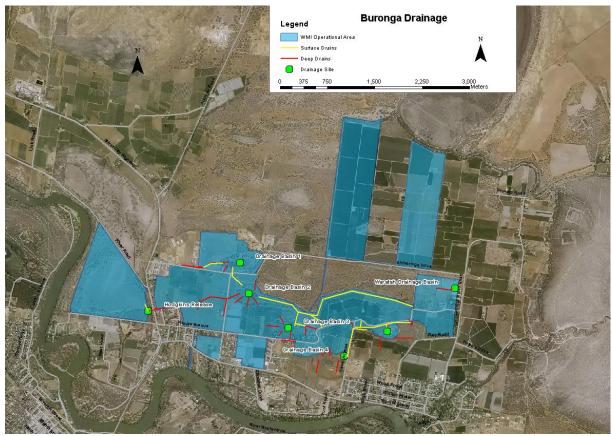

The Approval Holder has, by the 31st of October each year, submitted to the Minister an electronic copy of an Annual Compliance Report for the preceding water year (from 1 July to 30 June).

Condition 2

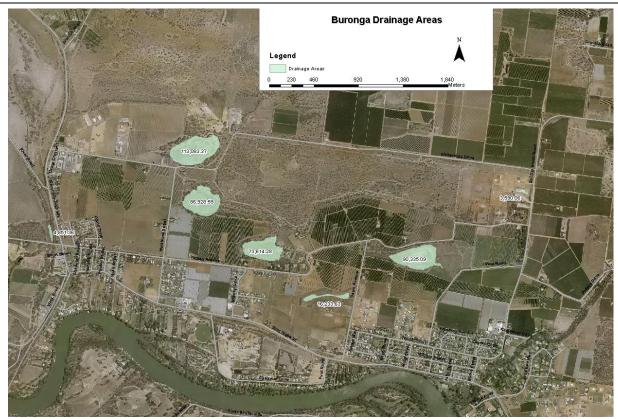
Following are plans of WMI Irrigation Limited Infrastructure for the year 2020/21.

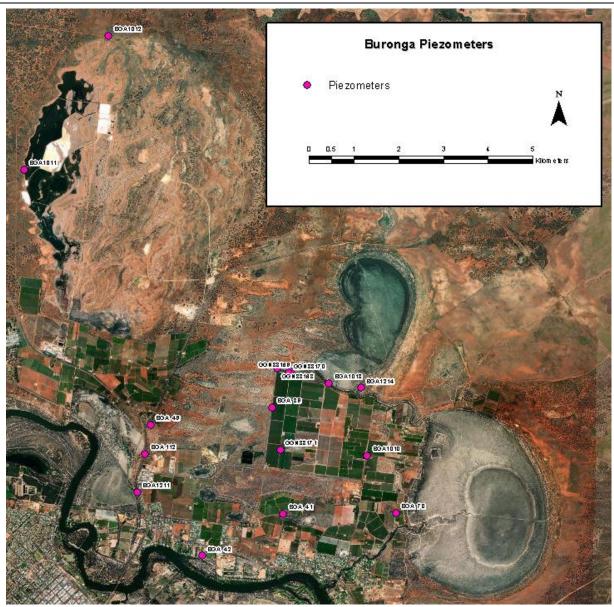
Condition 2.1

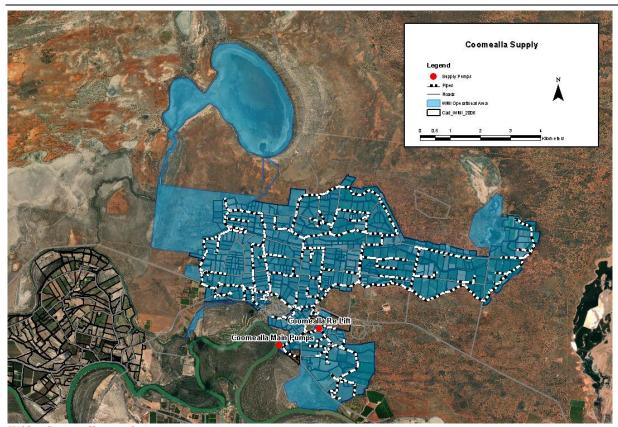

Area of Operations, existing on 30 June 2021, showing, to the Minister's satisfaction, the boundary of all included land and including any amendments made by the inclusion and exclusion of lands in accordance with sections 131 and 135 of the *WMA 2000*, and showing the boundary of any other land water is suppled to that are not included in the Area of Operations. Zero changes to area of operations in financial year 2020/21.

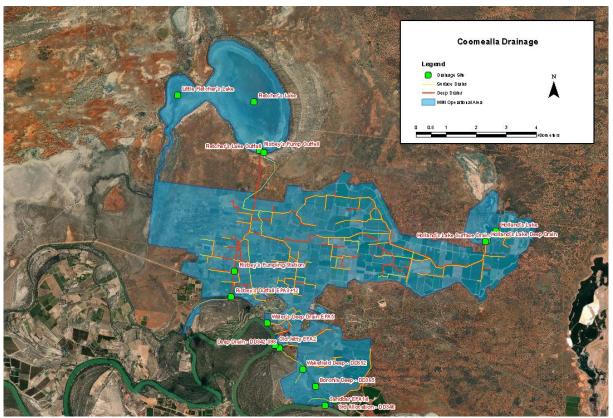

WMI Operational Area

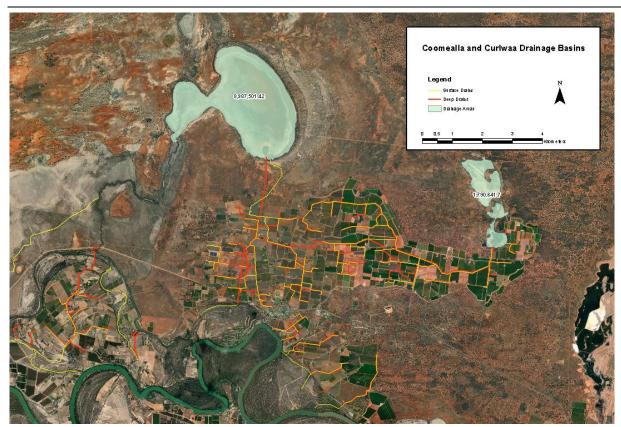
Condition 2.2

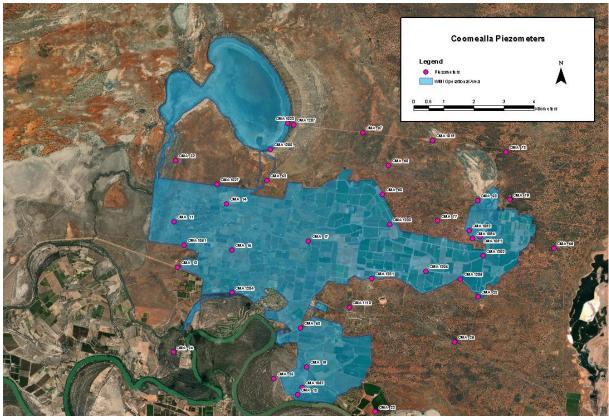

Plans showing current location of Major water courses, Authorised works and supply infrastructure, Drainage infrastructure, Drainage disposal sites and Monitoring sites.

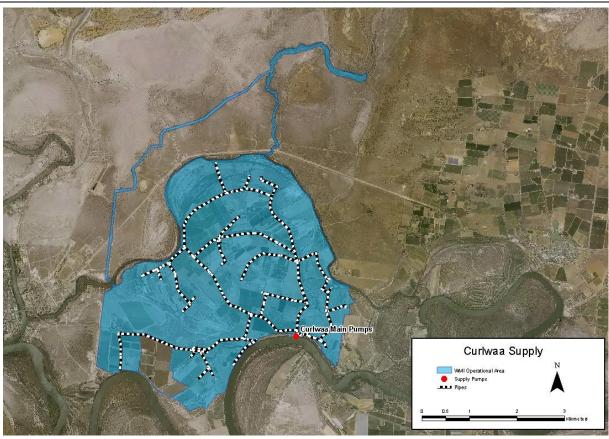

W01 – Buronga supply. Area of operations.

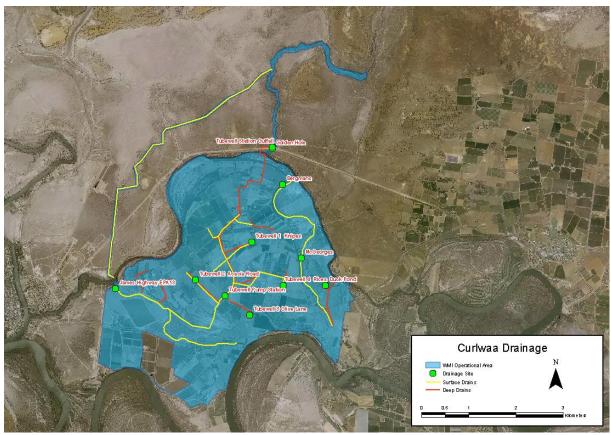

Buronga drainage infrastructure

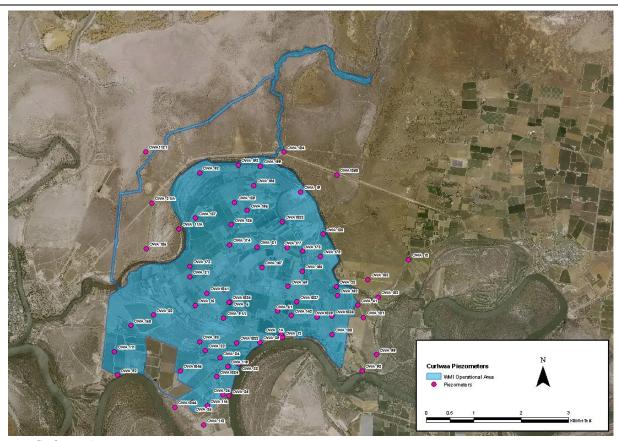

Buronga - Extent of area (square metres) that are temporarily inundated to store drainage and storm water (evaporation basins).


Buronga Piezometers


W02 - Coomealla supply.


Coomealla Drainage Infrastructure


Coomealla and Curlwaa - Extent of area (square metres) that are temporarily inundated to store drainage and storm water (evaporation basins).


Coomealla Piezometers

W03 - Curlwaa pumping plant and supply infrastructure

Curlwaa Drainage Infrastructure

Curlwaa piezometers

Statement of Compliance

Condition 2.3

WMI is in compliance of Approval number 60CA581273.

Groundwater monitoring results showing destroyed, dry, inactive, and active piezometers are included in this report.

An attempt to re-condition the Salt Interception Scheme (SIS) tubewell at Knipes failed in 2015/16.

The SIS has operated since the late 1960's under various configurations; controlled by government until 1995 and WMI thereafter. NRAR have informed WMI on 18August2021 there is now a requirement for a works approval and WAL to operate the SIS; WMI will investigate the process of licensing.

WMI has attached a consultant's groundwater hydrogeologist report October 2020, this is a long-term audit of our groundwater control and monitoring. This has been used to establish the best course of action for either replacement or retirement of the failed tubewell and destroyed piezometers. Extract from report:

Recommendations for Groundwater Monitoring

It is recommended that WMI continue monitoring within their operating network to comply with conditions of the water use approval, maintain a consistent data set, and ensure the collection of time series salinity data (which is not routinely collected as part of state monitoring. For the WMI monitoring program going forward the following recommendations may be adopted to confirm and or improve confidence in monitoring data quality. This includes:

- Confirm correct bore location details by taking GPS co-ordinates at each site comparing the results to the existing WMI records and NSW government records to identify the correct dataset.
- Measure total bore depth during the next annual monitoring round and comparison of this data to known construction details to confirm that monitoring bores remain open to the aquifer.

- Exclude dry bores from ongoing monitoring where the 2019-2020 monitoring data indicates the screen is mostly or completely blocked.
- Survey the natural surface elevation and reference elevation of bores in the current network where this data is unavailable (10 bores) so that depth to water measurements can be compared to river levels and changes in groundwater gradients can be assessed.
- It is recommended that a selection of bores in the WMI network (20%) are surveyed. This data can be compared to the existing data to assess the accuracy of reference elevation data as most sites have no documented survey methodology. Additional survey may then be required to improve confidence in groundwater elevations and the assessment of groundwater trends.

 Several bores within the WMI networks have been destroyed or are listed as dry, despite this the existing monitoring data provides a relatively good spatial coverage of the irrigation footprint to identify the potential impacts of irrigation and drainage. However, it is recommended that the network distribution be reviewed following the collection of data listed above, particularly confirmation of correct bore locations and measurement of total bore depth. This data can then be used to identify gaps in the current monitoring network and determine if existing bores not currently monitored by WMI can be included in the annual monitoring round or if replacement bores are required where there are gaps. It is then recommended that a groundwater monitoring plan be developed and presented to the regulator to provide an agreed monitoring strategy going forward. This should also include an update of the agreed set of reporting outputs or performance indicators to be included in the annual compliance report.

It is also recommended that WMI continue the collection of 3 yearly crop report data to capture changes in irrigation methods, irrigated area, and crops. This is a valuable data set and can be used to support the analysis of groundwater trends.

Recommendations for SIS Operations

The review of the operational and monitoring data indicates that the Curlwaa SIS does not need to operate under current conditions and there is currently no need to refurbish tubewell 1. However, groundwater monitoring data should continue to be collected annually and reviewed against trigger levels to provide a safeguard if groundwater levels begin to rise. Groundwater levels should be reviewed in the context of rainfall and river level data as hydrograph analysis shows that the floodplain aquifer responds to flood and rainfall events which may result in rises in groundwater levels that are only short term. Irrigation supply and method data should also be reviewed with groundwater trends. Previous communications with Department of Natural Resources by WMI have suggested a trigger level of 31.8mAHD (i.e., 1m above pool level) as a trigger to reinstate SIS operation. This trigger level is considered reasonable however it is also proposed that if groundwater levels rise to 31.3 MAHD (0.5m above pool level) this should trigger a review of SIS operations and the development of a plan to reinstate pumping. This is to prevent a significant time lag for reinstating groundwater pumping if the 31.8mAHD level is reached.

It has been noted Schedule One – 'Authorised Supply Works' needs to be updated: W02 Work details should read:

- 5 Variable axial flow pumps of 55.2, 55.2, 55.2, 63ML/day.
- 3 Variable centrifugal pumps of 10, 10, 10MLD

3 original (55.2MLD) pumps have been replaced with 3 63MLD pumps. We have a 2-year plan to replace the remaining pumps with 63ML pumps.

3 variable centrifugal pumps of 10, 10 ,10 MLD – used as auxiliary/winter pumps.

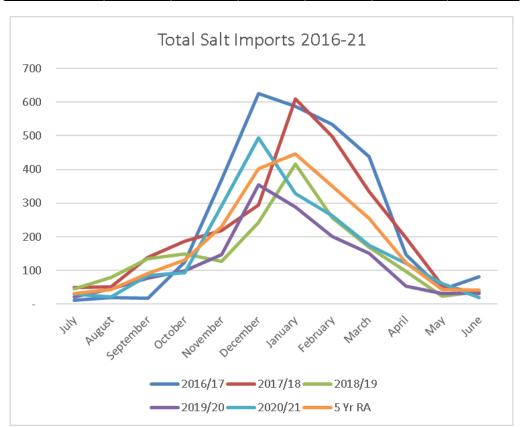
After upgrade is complete our capacity will be 346MLD (as current W02).

Presentation of Data and Analyses

Condition 2.4

Data from all monitoring required by this Monitoring and Reporting Plan has been supplied in electronic format, including:

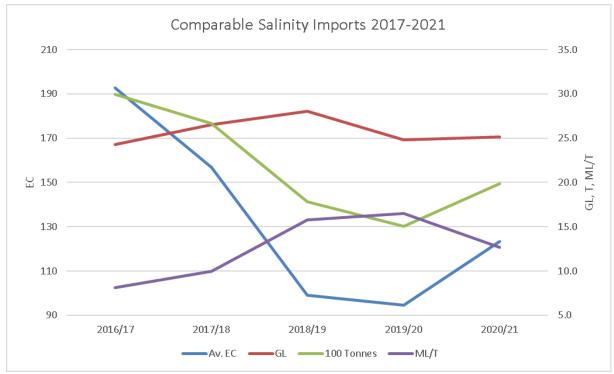
- PDF of this report.
- Original Excel spreadsheets used for calculations and presentations within this report.
- Other original documents forming part of this report.


Condition 2.5

Salinity

There have been no significant salt load discharges and no changes to any works or practices that could lead to increased impact trends on the River Murray. EC is low due to drought conditions.

a) Comparable salinity import data for at least 2 years (5 years):


	Total Salt Imports (Tonnes)							
Month	2016/17	2017/18	2018/19	2019/20	2020/21	5 Yr RA		
July	12	50	46	22	29	32		
August	20	52	79	46	22	44		
September	17	140	135	77	86	91		
October	124	186	149	100	94	131		
November	370	218	127	147	292	231		
December	626	295	242	354	494	402		
January	587	610	417	289	328	446		
February	533	497	256	200	262	350		
March	438	335	170	151	175	254		
April	146	197	97	53	122	123		
May	43	55	23	31	61	43		
June	81	31	38	34	19	41		
Year to Date	2,998	2,666	1,779	1,504	1,984	2,186		
Total	2,998	2,666	1,779	1,504	1,984	2,186		
Average EC	163	138	139	114	123.51	135		

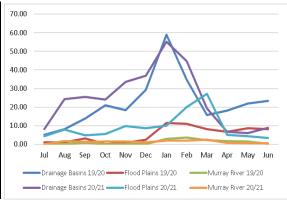
The chart shows seasonal water usage affecting salt imports for each month; this is in line with normal annual irrigation. For annual trends, see para 2.5 Salinity (b).

Comparable Salinity import data for a year being at least 5 years prior:

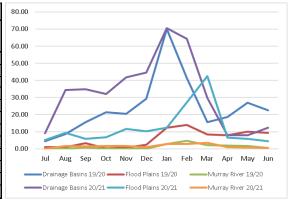
Annual	2016/17	2017/18	2018/19	2019/20	2020/21	5 Yr RA
Av. EC	193	157	99	95	123	133
GL	24.3	26.5	28.1	24.8	25.1	25.8
100 Tonnes	30.0	26.7	17.8	15.0	19.8	21.9
ML/T	8.1	10.0	15.8	16.5	12.7	11.8

This chart shows the effect of EC on annual salt imports.

There are no new targets identified, the salt imports are controlled purely by the salt content of the river and quantity of water extracted. In previous years WMI has reported the five-year average EC as a daily average of the river EC; In this report (and subsequent reports) the annual EC average has been calculated by daily salt imported in tonnes /daily water pumped in GL/0.64; this gives a true average EC of 'supplied' water. This is an identified benchmark although we have no control over this.

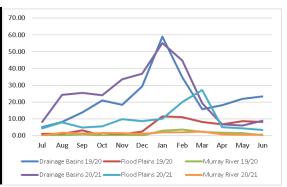

Supply remains in a range between 24-28GL per year. Salt imports have dropped since the high river event in 2016/17 when average EC was very high, conditions in 2020/21 have moved closer to the average. Average EC and salt imports are expected to rise in 21-22 with more significant rain events and higher than normal river events; supply is likely to move to the mid-range of 24-28GL, as more land is put back into production.

Discharge

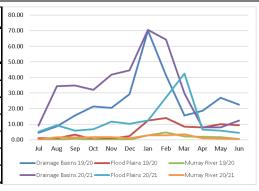

a) Discharges from all drainage outfalls for the 2020/21 year:

	Buronga	1	С	oomeall	а		Curlwaa			Total				
Т	otal Drainage	÷	Т	otal Drainage	÷	Т	otal Drainage	÷	Total Drainage					
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)			
13.35	1,089	9.31	405.76	2,108	547.53	0.00	NA	0.00	419.11	1598.91	556.83			
D	rainage Basiı	ns	Di	rainage Basiı	าร	D	rainage Basiı	ns	Drainage Basins					
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)			
13.35	1,089	9.31	279.93	2,123	380.28	0.00	NA	0.00	293.28	1606.00	389.58			
	Flood Plains			Flood Plains			Flood Plains			Flood Plair	ıs			
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)			
0.00	NA	0.00	110.55	2,091	147.97	0.00	NA	0.00	110.55	2091.45	147.97			
	Murray River			Murray River		Murray River				Murray Rive	er			
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)			
0.00	NA	0.00	15.28	1,971	19.28	0.00	NA	0.00	15.28	1971.33	19.28			

Drai	Drainage water (ML) - Comparable data for last 2 years								
	Drainage Basins	Flood Plains	Murray River	Drainage Basins	Flood Plains	Murray River			
	19/20	19/20	19/20	20/21	20/21	20/21			
Jul	5.02	1.08	0.00	8.22	4.37	0.00			
Aug	8.24	1.09	0.00	24.27	7.88	1.65			
Sep	13.79	3.22	0.76	25.58	4.77	1.25			
Oct	20.95	0.17	0.00	24.08	5.59	1.45			
Nov	18.27	0.86	0.00	33.48	9.86	1.46			
Dec	29.21	2.55	0.00	36.78	8.54	0.98			
Jan	58.87	11.56	2.92	55.19	9.96	2.12			
Feb	34.77	11.12	3.77	44.60	20.00	1.95			
Mar	15.85	8.13	2.22	19.36	27.21	2.42			
Apr	18.24	6.74	1.69	6.79	5.02	0.81			
May	22.00	8.59	1.51	6.00	4.47	0.68			
Jun	23.38	8.11	0.40	8.92	3.32	0.52			



S	Salt Exports (T) - Comparable data for last 2 years								
	Drainage	Flood	Murray	Drainage	Flood	Murray			
	Basins	Plains	River	Basins	Plains	River			
	19/20	19/20	19/20	20/21	20/21	20/21			
Jul	4.37	1.04	0.00	9.21	5.18	0.00			
Aug	8.60	1.02	0.00	34.43	9.39	1.71			
Sep	15.67	3.24	0.73	34.77	5.95	1.52			
Oct	21.30	0.18	0.00	31.98	6.75	1.71			
Nov	20.52	0.79	0.00	41.76	11.77	1.66			
Dec	29.25	2.45	0.00	44.49	10.35	1.06			
Jan	69.99	12.41	2.74	70.48	12.37	2.79			
Feb	41.43	13.90	4.75	64.25	27.15	2.82			
Mar	15.70	8.37	2.21	29.84	42.60	3.64			
Apr	18.72	7.88	1.88	7.94	6.60	0.99			
May	26.95	9.92	1.68	8.05	5.82	0.81			
Jun	22.49	9.25	0.44	12.37	4.55	0.59			



b) Comparable data for a year being at least 5 years prior:

Draina	Drainage Water (ML) over 7 years										
	Drainage	Flood	Murray								
	Basins	Plains	River								
2014/15	258.62	43.15	12.78								
2015/16	227.98	47.84	6.33								
2016/17	285.71	62.57	3.30								
2017/18	352.41	58.93	17.57								
2018/19	221.99	46.33	1.81								
2019/20	268.59	63.23	13.27								
2020/21	293.28	111.00	15.28								

Sal	Salt Exports (T) over 7 years									
	Drainage	Flood	Murray							
	Basins	Plains	River							
2014/15	250.19	40.50	10.96							
2015/16	253.18	48.67	6.07							
2016/17	366.50	59.24	3.87							
2017/18	422.96	58.38	7.88							
2018/19	277.27	46.96	2.09							
2019/20	295.00	70.44	14.42							
2020/21	389.58	148.48	19.28							

- c) The majority of the drainage water trend follows the irrigation demand and to a lesser degree rainfall events. 2020/21 irrigation supply was 98% of the 5-year average; Rainfall was 238.4mm, below the 50-year average of 283mm but more than the last 3 years; there was an increase in drainage water. September 2019 WMI introduced pulsed hydrogen peroxide dosing, currently at 4 hours a day at 5ppm at all our extraction sites, this is increased up to 24/7 depending on river water quality and demand; This is to control bryozoan growths in the pipeline, aimed at improved water quality at customer outlets; Customers have generally noticed their on-farm filters have been running for longer between backflushes, this has reduced the quantity of backflush water returned to the surface drain system; although when river water quality is bad, peroxide dosing cannot dissolve organic matter in the pipeline.
- d) Salt exported follows a similar pattern to drainage water throughout the year; Long term change from dominant furrow irrigation in 1997 to dominant drip irrigation in 2021 has reduced drainage water from 4848ML in 1998/99 to 420ML in 2020/21; exported salt in 1998/99 was 6538 tonnes, while 2020/21 was 557 tonnes. If this is compared against salt imports, it appears the imported salt is now being retained on irrigated land; sustained rainfall may control the salinity to some extent.
 - Individual salinity and salt load of schedule 1 extraction sites is continued at condition 2.14.
 - Individual salinity and salt loads of attachment 1 discharge sites is found at condition 2.15
 - A simple salt balance report is found at condition 2.16

Groundwater

The Curlwaa salt interception scheme tubewell pumps have been mostly turned off for the 2020/21 irrigation season, with maintenance runs only. With low ground water the pumps run dry as the ground water flow cannot keep up with the pump output. The low ground water has not warranted the continued operation and the expense of running these pumps. Following advice from 'Department of Natural Resources' in 2009, pumping may be suspended when groundwater falls to 0.5m above river level. Pumping will recommence when ground water levels rise to 1 metre above pool level (currently 31.80 m AHD). As mentioned previously 'Knipes' tubewell has failed, re-construction will be reviewed if long term groundwater levels rise to 0.5M above pool level; in line with following advice from groundwater hydrogeologist 2019/20:

Recommendations for SIS Operations

The review of the operational and monitoring data indicates that the Curlwaa SIS does not need to operate under current conditions and there is currently no need to refurbish tubewell 1. However, groundwater monitoring data should continue to be collected annually and reviewed against trigger levels to provide a safeguard if groundwater levels begin to rise. Groundwater levels should be reviewed in the context of rainfall and river level data as hydrograph analysis shows that the floodplain aquifer responds to flood and rainfall events which may result in rises in groundwater levels that are only short term. Irrigation supply and method data should also be reviewed with groundwater trends. Previous communications with Department of Natural Resources by WMI have suggested a trigger level of 31.8mAHD (i.e., 1m above pool level) as a trigger to reinstate SIS operation. This trigger level is considered reasonable however it is also proposed that if groundwater levels rise to 31.3 MAHD (0.5m above pool level) this should trigger a review of SIS operations and the development of a plan to reinstate pumping. This is to prevent a significant time lag for reinstating groundwater pumping if the 31.8mAHD level is reached.

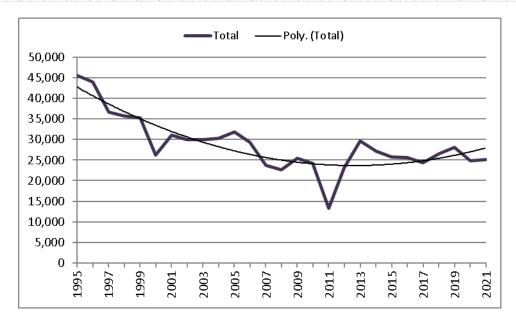
Western Murray Irrigation | 30 October 2020

Groundwater Monitoring and Salt Interception Scheme Review Page 4

The water table has remained low for the past year, as expected during a dry season. Drip is now the dominant irrigation method; this retains water around the plantings' root ball, which does not tend to recharge the water table as much.

Full details of groundwater at Condition 2.17.

Extraction


Comparable extraction data (ML) for at least 2 previous years (3 years):

			TOTAL			
Month	2018/19	2019/20	2020/21	3 Yr RA	%	ML Pumped by Month 2018/19 - 2020/21
July	612	335	404	450	90%	7,000
August	904	714	268	629	43%	6.000 — 2018/19
September	1,366	1,204	936	1,169	80%	2019/20
October	2,498	2,193	1,044	1,911	55%	5,000 — 2020/21
November	2,583	2,967	3,710	3,087	120%	— 3 Yr RA
December	4,435	5,071	4,885	4,797	102%	4,000
January	6,472	4,945	4,718	5,378	88%	3,000
February	3,995	3,364	3,794	3,718	102%	
March	2,881	2,165	2,451	2,499	98%	2,000
April	1,437	841	1,748	1,342	130%	1,000
Мау	371	444	879	565	156%	1,000
June	514	572	262	449	58%	. —
Year to Date	28,067	24,816	25,099	25,994	97%	12th telegrif fetheres Orbest foreigne December Hundry Fether, March Poly, March 17th
Total	28,067	24,816	25,099	25,994		in the state of th

2020/21 extraction (ML) was 3% below the 3-year average, an unremarkable year.

Comparable data for a year being at least five years (27 years):

Jun-30	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Buronga	3,387	3,585	3,496	3,277	2,925	2,505	2,879	3,245	3,494	3,385	3,466	3,053	2,472	2,285	3,006	3,223	1,822	3,273	4,033	3,289	2,816	2,906	2,892	3,248	3,542	2,338	2,578
Coomealla	34,661	33,385	25,987	25,238	25,537	18,199	21,831	20,509	21,218	21,031	21,930	20,502	16,640	16,199	17,877	16,733	9,108	15,943	20,478	19,319	18,596	18,376	17,751	19,266	20,584	18,871	19,269
Curlwaa	7,413	6,953	7,145	7,245	6,798	5,509	6,314	6,139	5,309	5,804	6,373	5,750	4,676	4,134	4,525	4,323	2,380	3,909	5,132	4,534	4,352	4,353	3,660	4,027	3,943	3,607	3,252
Total	45 461	43 923	36 628	35 760	35 260	26 213	31 024	29 893	30 021	30 220	31 769	29 305	23 788	22 618	25 408	24 279	13 310	23 125	29 643	27 142	25 764	25 635	24 303	26 541	28 069	24 816	25 099

Long term extraction shows a marked reduction in water usage; utilisation of irrigation area is presently at 79%, 1997 this was 98%; Irrigable area has increased by 9% from 1997. Water savings have largely been achieved by a change from dominant furrow irrigation in 1997 to dominant drip irrigation in 2021.

Long term climate tends to go through long periods of drought followed by heavy rainfall. 2020/21 was just below average annual rainfall 238.4mm (283mm 50-year average), with over half of this rain falling between July and October.

Water Use

- a) 2020/21 WMI extracted 25,099ML for water use (see 2.5 a) Extraction for 2-year data), this was used predominantly for horticulture with a small amount of this allocated for General Security (64ML) and Domestic and Stock use (560ML).
- b) WMI crops are surveyed every three years:

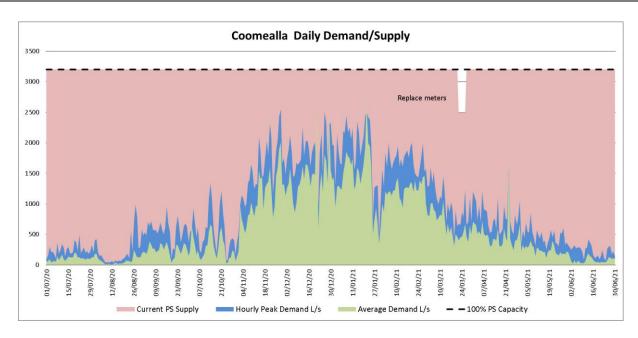


Figure 2: Western Murray Irrigation – crop types from 1997 to 2018

- c) It has been noticed the horticulture business is gaining some momentum within WMI. Short term trends indicate more irrigable land is being put back into production; this will also increase water usage which will challenge our infrastructure in its current configuration.
- d) We are pumping less water annually than 1997, but drip irrigation puts excessive intra-day pressure on our infrastructure (designed around furrow irrigation); days above 40C create very high peaks of demand from drip irrigation systems, a pipeline upgrade is planned in winter 2022 to alleviate a low-pressure problem area:

³ Vacant S: not irrigated but previously an irrigated seasonal crop

⁴ Vacant P: not irrigated but previously an irrigated permanent planting

Three rain events can be clearly seen effecting demand in August, October, and January. Coomealla pump station manages current peak demand in December/January by making all pumps available.

Condition 2.6

The following have been identified as possible data omissions and discrepancies with an explanation of action undertaken/proposed to remedy the monitoring and reporting deficiency.

- a) Partial failure of salt interception scheme Knipes tubewell as previously reported at 'Condition 2.5 Groundwater'.
- b) Several destroyed piezometers have not been replaced; however, consideration is being given to which piezometers are required to achieve the appropriate reporting coverage with consultation with a groundwater hydrogeologist. Rehabilitation of several piezometers have been attempted in 2017/18; we will know if they are functional if the ground water rises to a measurable level. Peizometers are currently being checked for GPS location and as built screen depths being updated from historical files, See condition 2.17.

Condition 2.7

All files including the Compliance Report and all associated Excel spread sheets have been provided; as a record of monitoring and testing data for discharged water salinity and volume and groundwater conditions. These are provided in an unrestricted access, electronic format.

Condition 2.8

"Salinity Training Manual"; Published by NSW Department of Primary Industries, June 2014 is used as a reference for understanding the effects of salination and methods for monitoring and control. Quality assurance is achieved by annual calibration of our extraction meters for extraction volume. MDBA website is used for salinity readings from Wentworth weir. Volume of exports is measured by V-notch or electronically; Salinity is measured with a salinity meter which is calibrated before every use with a test solution. These measurements are increased during flood/rain events. As part of EPA reporting, at least once a year (depending on drainage flow) drainage water samples are sent to consultants 'Pinion Advisory-Mildura' for NATA approved laboratory testing for chemical content (at NMI, 105 Delhi Road, North Ryde, NSW 2113). Piezometers are measured in accordance with the works approval. Training is also carried out, so at least 3 staff are familiar with the current monitoring procedures. Consultants are used for advice when required.

New Measures to Limit Groundwater Recharge and Discharge of Salt

Condition 2.9

A continuing trend towards drip irrigation requires much finer filtration, this requires more frequent operation of filter backflush systems; Hydrogen peroxide treatment was introduced in 2019/20 to stop the growth of pipeline bryozoans and other organic growths, it is expected to reduce backflush water into the surface drainage, thereby reducing groundwater recharge and discharge of salt.

The water table has been below trigger-level for several years, minimising discharge of salt into the Murray River system.

Reporting on Water Management

Condition 2.10

In respect of each water supply work listed in schedule one (of the Monitoring and Reporting Plan for Combined Approval 60CA581273) the reconciled monthly water volumes in megalitres are as follows:

a) Extracted under water access licences held by the approval holder. Domestic+Stock, General Security and High Security are <u>not</u> metered separately. There is a 0.8ML totalised discrepancy between Water NSW statements and WMI reported figures.

Water	Water NSW - Reconciled Usage								
IWAS Statement									
Туре	WAL	ML							
HS	60AL581271	24,542.2							
DS	60AL581272	490.0							
DS	60AL682421	34.0							
GS	GS 60AL583086 32.0								
	Total	25,098.2							

WMI – Reconciled Usage for each Authorised supply works

					<u>MI – Reconcuea Osage Jor each Aumorisea sup</u>					piy w	UIKS						
		BUR	ONGA			СООМ	EALLA			CUR	LWAA						
												TOTAL					
Month	2018/19	2019/20	2020/21	3 Yr RA	2018/19	2019/20	2020/21	3 Yr RA	2018/19	2019/20	2020/21	3 Yr RA	2018/19	2019/20	2020/21	3 Yr RA	%
July	45	16	43	35	437	224	287	316	130	95	74	100	612	335	404	450	90%
August	110	63	26	66	631	500	197	443	163	151	45	120	904	714	268	629	43%
September	158	103	109	123	943	879	652	825	265	222	175	221	1,366	1,204	936	1,169	80%
October	306	232	133	224	1,822	1,611	757	1,397	370	350	154	291	2,498	2,193	1,044	1,911	55%
November	330	272	374	325	1,928	2,276	2,890	2,365	325	419	446	397	2,583	2,967	3,710	3,087	120%
December	528	413	482	474	3,426	4,031	3,837	3,765	481	627	566	558	4,435	5,071	4,885	4,797	102%
January	791	433	427	550	4,923	3,904	3,752	4,193	759	608	538	635	6,472	4,945	4,718	5,378	88%
February	519	348	370	412	2,926	2,522	2,973	2,807	550	494	451	498	3,995	3,364	3,794	3,718	102%
March	401	263	288	317	2,038	1,563	1,788	1,796	442	339	375	385	2,881	2,165	2,451	2,499	98%
April	208	86	209	168	962	625	1,290	959	267	130	249	215	1,437	841	1,748	1,342	130%
Мау	77	56	85	73	209	314	649	391	85	74	145	101	371	444	879	565	156%
June	69	53	32	51	339	422	196	319	106	97	34	79	514	572	262	449	58%
Year to Date	3,542	2,338	2,578	2,819	20,583	18,871	19,269	19,574	3,942	3,607	3,252	3,601	28,067	24,816	25,099	25,994	97%
Total	3.542	2.338	2.578	2.819	20.583	18.871	19.269	19.574	3.942	3.607	3.252	3.601	28.067	24.816	25.099	25.994	

- b) No other water access licences were used for extraction. WAL60AL583565 Domestic and Stock licence (36ML) was transferred to WMI on 23May2021, we were unable to extract this water as there was no provision for ordering.
- c) No water was extracted for environmental or river operational purposes.
- d) All water is delivered to customers except for leakage and scouring; scouring used 14.5ML.

Condition 2.11

Water discharged from (drainage) sites listed in Attachment 1:

- a) Discharged without credit:
 - 403.55 ML was retained in area of operations.
 - 15.28 ML was returned to Murray River.
- b) Nil discharges for environmental or river operational purposes.

Condition 2.12

a) The annual water balance is all water extracted, there is zero irrigation water returned to river. Customer field meters compared with pump station extraction meters:

ALL Areas	Pumped - from Pump Station		Field - from meter reads		Qu	arterly Diffe	erence	YTD Difference			
2020-21		Totaliser	Quarter	Totaliser	Quarter	ML	% Diff	Del. Factor	ML	%	Del. Factor
	Q1	1,605	1,605	1,515.3	1,515.3	90	105.92%	5.92%	90	105.92%	5.92%
	Q2	8,837	7,232	8,926.8	7,411.5	-179	97.58%	-2.42%	-90	98.99%	-1.01%
	Q3	22,098	13,261	22,506.4	13,579.6	-319	97.65%	-2.35%	-408	98.19%	-1.81%
	end of May	24,832	2,734	25,276.1	2,769.7	-36	98.70%	-1.30%	-444	98.24%	-1.76%
EOY	EOY	25,098	266	25,521.5	245.4	20	108.30%	8.30%	-424	98.34%	-1.66%
			25.000		25 524 50	422.00	00.240/				

Correction > -1.66%

Pump stations are <u>not</u> stopped during meter reads; an extra meter reading is taken in May to allow customers to balance their water accounts before end of year; 30 June pump station meters are read at midnight.

- b) Negligible losses in fully pipelined network.
- c) No change to offline storages (balance towers).

Condition 2.13

The estimated annual values in measurement units requested for:

- a) Rainfall = 238.4mm
- b) Evapo-transpiration = 2,452mm
- c) Water deliveries for horticulture = 21,726ML (87%)
- d) Water deliveries for summer crops = 2,431ML (10%)
- e) Water deliveries for winter crops = 34ML (<1%)

Table 3: Western Murray Irrigation – irrigated crops in 2018

	Crop type		2018 (ha)	2018 %	Description
		Dried	245	6%	
	Grapevine	Table	70	2%	
		Wine	1,635	40%	
	Citrus		685	17%	Grapefruit, Lemon, Lime, Mandarin, Navel, Blood Orange, Other, Tangelo, Valencia
sdo		Avocado	35	1%	
ermanent crops		Fig	40	1%	
ent	Fruit tree	Stone fruit	35	1%	
man		Other	25	1%	Date Palm, Mango, Olive,
Peri		Pomegranate	30	1%	
	Nut tree	Almond	25	1%	
	Nut tree	Walnut	10	<1%	
	Other Miscellaneous		25	1%	Flowers, Native Plants, Nursery, Strawberries
	Permanent crop	s (sub-total)	2,860	70%	
	Vacant P ¹		705	17%	Vacant/not irrigated
	Field crop	Pasture	35	1%	
SC	rield crop	Other	20	<1%	Cereal, Cover Crop, Lucerne, Turf
cro		Asparagus	40	1%	
nal	Vegetable	Cucurbit	250	6%	Melon, Pumpkin, Watermelon, Zucchini
Seasonal crops		Other	30	1%	Capsicum, Mixed Vegies, Tomato
S	Seasonal crops	(sub-total)	375	9%	
	Vacant S ²		160	4%	Vacant/not irrigated
	Total all crop are	4,100	100%		

- f) Water deliveries for Domestic and Stock = 524ML (2%).
- g) Application areas for the water uses c) to f) estimated from locally relevant crop water use factors = (2860+375) = 3,235ha.

h) The distribution of irrigation intensity (ML/ha/year) in at least three intensity ranges for the main supply sub-division areas. This includes all farms where alternative irrigation supply is possible, this is extremely variable and will skew the ML/Ha figures.

Larger farms were surveyed from each irrigation area to represent water usage (ML/Ha) for the three major crop types in each area. Farms were selected with mature crops (except vegetables) in commercial production; use solely WMI irrigation supply and considered a well-managed commercial agribusiness. Newly planted, minimal irrigation (no commercial crop i.e., in receivership) and dual irrigation supplies were avoided, to enable reliable water usage figures ML/Ha:

• Average Buronga Irrigated Area = 2,578ML/ (490-60)

= 2,578ML/430

= 6.0 ML/ha/year On Farm production usage

• Grapevines = 8.5ML/Ha (F45)

• Citrus = 6.61ML/Ha (F27,28,29)

Vegetables winter/spring = No Data

(Crop type	1997	2003	2006	2009	2012	2015	2018	% of 2018 total	Change 1997-2018
	Grapevine	105	180	160	250	220	200	235	48%	+130
ent	Citrus	225	160	160	135	140	135	130	27%	-95
Permanent	Fruit Tree	5	0	5	5	5	5	5	1%	0
Per	Nut Tree	-	-	-	-	-	-	-	-	-
	Other	-	-	-	-	-	-	-	-	-
onal	Field Crop	-	-	-	-	-	-	-	-	-
Seasonal	Vegetable	45	0	5	20	60	45	60	12%	+15
Ħ	Vacant S ⁷	0	0	0	0	0	30	30	6%	+30
Vacant	Vacant P ⁸	5	15	15	45	30	40	30	6%	+25
	Total (ha)	385	355	345	455	455	455	490	100%	+105
	% Vacant	1%	4%	4%	10%	7%	15%	12%		

• Average Coomealla Irrigated Area = 19,269ML/ (2735-445)

= 19,269ML/2290

= 8.41 ML/ha/year

On Farm production usage

Grapevines = 6.4ML/Ha (F253) Citrus = 8.3ML/Ha (F316) Vegetable Watermelon = 7.8ML/Ha (F117)

(Crop type	1997	2003	2006	2009	2012	2015	2018	% of 2018 total	Change 1997-2018
	Grapevine	2,015	2,205	2,135	1,860	1,750	1,605	1,555	57%	-460
ent	Citrus	435	320	320	305	305	285	280	10%	-155
Permanent	Fruit Tree	15	10	15	30	75	100	145	5%	+130
Per	Nut Tree	0	5	5	5	10	25	35	1%	+35
	Other	5	5	20	20	30	25	25	1%	+20
onal	Field Crop	10	10	35	20	15	20	20	1%	+10
Seasonal	Vegetable	5	50	75	55	95	155	230	8%	+225
Ħ	Vacant S ¹¹	5	20	20	30	30	50	35	1%	+30
Vacant	Vacant P ¹²	15	35	90	410	430	475	410	15%	+395
	Total (ha)	2,505	2,660	2,715	2,735	2,740	2,740	2,735	100%	+230
	% Vacant	1%	2%	4%	16%	17%	19%	16%		

• Average Curlwaa Irrigated Area = 3,252ML/ (875-360)

= 3,252/515 = 6.31ML/ha/year

o On Farm production usage

Grapevines = 7.25ML/Ha (F4)
 Citrus = 4.72ML/Ha (F223)

Vegetable Watermelon = No Data

	Crop type	1997	2003	2006	2009	2012	2015	2018	% of 2018 total	Change 1997-2018
	Grapevine	185	270	280	210	190	190	160	18%	-25
ent	Citrus	515	445	440	370	350	315	275	31%	-240
Permanent	Fruit Tree	10	10	10	5	5	5	15	2%	+5
Per	Nut Tree	-	-	-	-	-	-	-	-	-
	Other	0	5	0	0	5	0	0	0%	0
onal	Field Crop	100	45	30	10	30	35	35	4%	-65
Seasonal	Vegetable	5	5	5	0	0	10	30	3%	+25
Vacant	Vacant S ¹⁵	50	75	85	110	90	100	95	11%	+45
Vac	Vacant P ¹⁶	5	40	50	185	220	225	265	30%	+260
Tota	al (ha)	870	895	900	890	890	880	875	100%	+5
% V	acant	6%	13%	15%	33%	35%	37%	41%		

COVID19 has discouraged planting of short crops due to lack of pickers; some crops were unpicked this year.

Reporting on Salinity and Saltload

Condition 2.14

The salinity and saltload of extractions at the sites listed in schedule 1, and in accordance with requirements set out in schedule 1:

- Flow ML/Month
- Salt Loads Tonnes/Month
- Salinity micro-Siemens/cm
- In table format

	BURON	GA W01	COOME	LLA W02	CURLW	AA W03	Average
Month	ML	Salt (T)	ML	Salt (T)	ML	Salt (T)	EC
July	43	3	287	21	74	5	112
August	26	2	197	16	45	4	128
September	109	10	652	60	175	16	144
October	133	12	757	68	154	14	141
November	374	30	2,890	227	446	35	123
December	482	49	3,837	388	566	57	158
January	427	30	3,752	261	538	37	109
February	370	27	2,973	205	451	30	108
March	288	21	1,788	127	375	27	112
April	209	16	1,290	89	249	17	109
May	85	6	649	45	145	10	108
June	32	2	196	14	34	3	113
Year to Date	2,578	208	19,269	1,521	3,252	255	124

All Areas		2020/21	
	ML	Salt (T)	AV EC
Year to Date	25,099	1,984	124

Condition 2.15

The salinity and salt loads of discharges at the sites listed in Attachment 1, and in accordance with the requirements set out in Attachment 1:

- Volume ML/Month
- Salt Load Tonnes/Month
- Monthly min, max, average
- Table format

District Work/Site Identifie	r	Curlwaa CW 6										on Details es (WGS84)		Type Dimensions		Centrifuga 80mm & 2 X- Section	200mm	
Name Representing disc	harge	James' Hig Discharge		ers Lake/T	uckers Cre	eek					5867601	E 6225910	N	Capacity		13 ML/D	= 0.04m	
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 ML	0.0	0.0	0.0	Flow	No Flow
Salt Load (T)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 T	0.0	0.0	0.0	FIOW	INO FIOW
Average EC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		0	0	NA	0	52

District Work/Site Identifie	Buronga B1											n Details s (WGS84)		Type Dimensions		Weir - 90° 300mm Pi		
Name Representing disc	Corbett Av		No.1							6099	902E	6219	514N	Capacity		X- Section 2 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site '	Visits
Volume (ML)	0.6	1.8	0.7	0.17	0.7	1.9	1.52	1.7	2.181	1.7	0.4	0.01	13.3 ML	2.2	0.0	1.1	Flow	No Flow
Salt Load (T)	0.4	1.3	0.6	0.11	0.4	1.4	1.08	1.3	1.490	1.0	0.2	0.01	9.3 T	1.5	0.0	0.8	FIOW	INO PIOW
Average EC	995	1,127	1,236	1,057	931	1,139	1,109	1,196	1,067	944	1,049	758		1,236	758	1,089	52	0

District		Coomeal	la								Locatio	n Details		Туре		Weir - 60°	V Notch	
Work/Site Iden	tifier	CM 5								(Coordinate	es (WGS8	34)	Dimensio	ns	600mm Pi	pe	
Name		Hollands	Lake Ma	in Deep D	rain											X- Section	= 1.13m	2
Representing d	ischarge	Discharg	e to Holla	nds Lake						6032	200E	6228	3800N	Capacity		8 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site '	Visits
Volume (ML)	3.1	11.8	9.3	6.1	18.5	21.4	34.0	25.6	16.1	4.3	3.6	1.3	155.2 ML	34.0	1.3	12.9	Flow	No Flow
Salt Load (T)	3.8	17.8	11.9	8.3	23.5	26.9	45.8	41.8	25.8	5.7	4.7	2.0	218.0 T	45.8	2.0	18.2	FIOW	INO FIOW
Average EC	1,912	2,350	1,994	2,122	1,985	1,964	2,101	2,552	2,507	2,068	2,055	2,325		2,552	1,912	2,194	52	0

District		Coomealla									Location	n Details		Type	Weir - 90°	V Notch		
Work/Site Ident	tifier	CM 1									Coordinate	s (WGS84)		Dimension	600mm Pip	е		
Name		Risbey's O	utfall - Risb	ey's Main D	Deep Drain										X- Section	$= 1.13 m^2$		
Representing d	ischarge	Discharge	to Tuckers	Creek						5940	80E	6226	900N	Capacity	8 ML/D			
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.0	0.0	0.5 ML	0.3	0.0	0.0	Flow	No Flow
Salt Load (T)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.0	0.0	0.5 T	0.4	0.0	0.0	FIOW	INO FIOW
Average EC	NA	NA	NA	NA	NA	NA	NA	NA	1,236	1,959	NA	NA		1,959	1,236	1,758	3	49

District Work/Site Iden	tifier	Coomealla CM 2	ì								Location Coordinate	n Details s (WGS84		Type Dimension	ns	Weir - 90° 600mm P		
Name Representing of	lischarge	Risbey's C Discharge			nel No.1 M	ain Deep D	Prain			5940	080E	6226	900N	Capacity		X- Section 8 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 ML	0.0	0.0	0.0	Flow	No Flow
Salt Load (T)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 T	0.0	0.0	0.0	FIOW	INO FIOW
Average EC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0		0	0	NA	0	52

District		Coomealla	ì								Locatio	n Details		Туре	Bank & Pi	ре		
Work/Site Identifie	r	CM 7									Coordinate	s (WGS84)		Dimensions	150mm Pi	pe		
Name		Water's De	eep Drain												X- Section	$= 0.07 \text{m}^2$		
Representing disc	harge	Discharge	s to Murra	y River						5958	325E	6226	100N	Capacity	0.5 ML/D			
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.0	0.8	0.0	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4 ML	0.8	0.0	0.1	Flow	No Flow
Salt Load (T)	0.0	0.9	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5 T	0.9	0.0	0.1	FIOW	INO FIOW
Average EC	NA	1,650	NA	1,600	1,900	NA	NA	NA	NA	NA	NA	NA		1,900	1,600	1,665	6	46

District Work/Site Identifier		Coomealla CM 21									Location Coordinate			Type Dimensions		Bank & Pip 150mm Pip	е	
Name Representing discharge		Old Jetty Discharges	to Murray	River						5962	298E	6225	511N	Capacity		X- Section 0.5 ML/D	= 0.07m²	
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.0	8.0	1.2	1.0	1.3	1.0	2.1	2.0	2.4	0.8	0.7	0.5	13.9 ML	2.4	0.0	1.2	Flow	No Flow
Salt Load (T)	0.0	0.9	1.5	1.3	1.4	1.1	2.8	2.8	3.6	1.0	0.8	0.6	17.8 T	3.6	0.0	1.5	FIOW	INO FIOW
Average EC	NA	1,579	1,900	1,940	1,757	1,684	2,059	2,253	2,350	1,925	1,881	1,767		2,350	1,579	2,003	37	15

District Work/Site Identifie	r	Coomealla CM 12&13										n Details s (WGS84)		Type Dimensions		Bank & Pi 150mm Pi	•	
Name Representing disc	harge	Deep Drain Discharge								5961	125E	6225	325N	Capacity		X- Section 0.5 ML/D	= 0.07m ²	
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.0	0.8	1.2	1.0	1.3	1.0	2.1	2.0	2.5	0.8	0.8	0.3	14.0 ML	2.5	0.0	1.2	Flow	No Flow
Salt Load (T)	0.0	0.9	1.5	1.3	1.4	1.1	2.8	2.8	3.8	1.0	1.0	0.4	17.9 T	3.8	0.0	1.5	FIOW	NO FIOW
Average EC	NA	1,579	1,900	1,940	1,757	1,684	2,059	2,253	2,336	1,925	1,864	1,700		2,336	1,579	2,002	38	14

District Work/Site Identifie	ır	Coomealla CM 14	1									n Details s (WGS84)		Type Dimensions		Bank & Pi 150mm Pi		
Name Representing disc	charge	Wakefield Discharge	•		od Plain					5972	200E	6224	650N	Capacity		X- Section 0.5 ML/D	$= 0.07 \text{m}^2$	
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	1.8	3.2	2.0	2.8	4.6	3.0	3.6	5.1	9.5	1.6	1.7	1.3	40.2 ML	9.5	1.3	3.4	Flour	No Flour
Salt Load (T)	2.0	3.9	2.6	3.3	5.6	3.5	4.4	6.2	13.4	2.0	2.2	1.7	50.8 T	13.4	1.7	4.2	Flow	No Flow
Average EC	1,756	1,913	1,966	1,840	1,900	1,846	1,900	1,900	2207	2,032	1,939	2,063		2,207	1,756	1,974	52	0

District Work/Site Identifie	r	Coomealla CM 15	1									n Details s (WGS84)		Type Dimensions		Bank & Pi 150mm Pi	•	
Name Representing disc	harge	Boronia Di Discharge	•		od Plain					5975	500E	6224	050N	Capacity		X- Section 0.5 ML/D	$= 0.07 \text{m}^2$	
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site '	Visits
Volume (ML)	0.0	0.8	0.2	0.2	0.5	0.8	0.9	1.3	1.5	0.4	0.3	0.2	7.2 ML	1.5	0.0	0.6	Flow	No Flow
Salt Load (T)	0.0	0.9	0.2	0.3	0.6	1.0	1.0	1.3	1.7	0.4	0.4	0.2	8.0 T	1.7	0.0	0.7	FIOW	INO FIOW
Average EC	NA	1.708	2.000	1.800	1.940	1.824	1.726	1.454	1824.1	1.808	1.900	1.800		2.000	1.454	1.743	25	27

District Work/Site Identifie	r	Coomealla CM 17									cation Details Type dinates (WGS84) Dimensions				Bank & Pipe 150mm Pipe			
Name Representing disc	3rd Allocation Main Deep Drain - DD346 senting discharge Discharges to Murray River Flood Plain 597850E 6223350N					Capacity		X- Section 0.5 ML/D	$= 0.07 \text{m}^2$									
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site '	Visits
Volume (ML)	2.6	3.0	1.3	1.6	3.5	3.7	3.3	11.6	13.5	1.6	1.5	1.5	48.7 ML	13.5	1.30	4.1	Flow	No Flow
Salt Load (T)	3.1	3.7	1.6	1.9	4.1	4.8	4.2	16.9	23.6	2.3	2.2	2.2	70.8 T	23.6	1.6	5.9	FIOW	INO FIOW
Average EC	1,914	1,926	1,963	1,941	1,847	2,001	1,969	2,274	2725.4	2,234	2,280	2,359		2,725	1,847	2,269	51	1

Condition 2.16

A simple annual salt balance representing the imported, exported and retained salt load for the area associated with each separate water supply work:

WMI Supply Imports

Buronga			С	oomeall	а	Curlwaa			
Main	Main Pumping Station			Main Pumping Station Main Pumping				ation	
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	
2,578	126	208	19,269	123	1,521	3,252	123	255	

WMI Drainage Outfalls

	Buronga			oomeall	а		Curlwaa			19.11 1598.91 556.8	
Т	Total Drainage Total Drainage			Total Drainage			Total Drainage				
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)
13.35	1,089	9.31	405.76	2,108	547.53	0.00	NA	0.00	419.11	1598.91	556.83
D	rainage Basiı	ns	D	rainage Basir	าร	Drainage Basins			Drainage Basins		
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)
13.35	1,089	9.31	279.93	2,123	380.28	0.00	NA	0.00	293.28	1606.00	389.58
	Flood Plains	i		Flood Plains			Flood Plains		Flood Plains		
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)
0.00	NA	0.00	110.55	2,091	147.97	0.00	NA	0.00	110.55	2091.45	147.97
	Murray River Murray River				Murray River			Murray River			
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)
0.00	NA	0.00	15.28	1,971	19.28	0.00	NA	0.00	15.28	1971.33	19.28

WMI Salt Balance

Salt (T)	Buronga	Coomealla	Curlwaa	Total
Imported	208.00	1,521.00	255.00	1,984.00
Exported to Drainage Basins	9.31	380.28	0.00	389.58
Exported to Murray Flood Plains	0.00	147.97	0.00	147.97
Exported to Murray River	0.00	19.28	0.00	19.28
Retained on Irrigated Land	198.69	973.47	255.00	1,427.17

Retained salt T/ha								
Buronga Coomealla Curlwaa								
Irrigated ha	430	2290	515					
Tonnes salt retained	199	973	255					
Average T/ha	0.46	0.43	0.50					

Reporting Groundwater Requirements

Condition 2.17

The results of monitoring of groundwater conditions by means of piezometers and groundwater control bores (tube-wells) in accordance with the monitoring and reporting requirements set out in Attachment 2.

On advice from NRAR, WMI have had the groundwater monitoring network reviewed by a consultant hydrogeologist, this report will be sent with the Annual Compliance Report. In accordance with this report the following audit will be started in 2021/22:

- 100% of WMI controlled Piezometers accounted for.
- GPS location re-established for GDA1994 and GDA2020
- AHD, screen depth and overall depth measured and confirmed at each piezometer.
- Assess dry/destroyed piezometers for rehabilitation.
- Liaise with other stakeholders to establish a plan of rectification for the whole piezo network.

Attachment 2- p.1

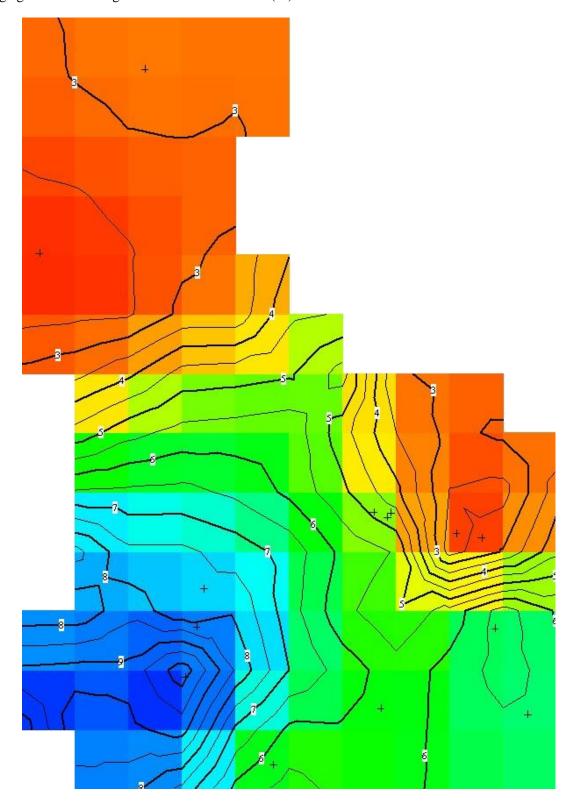
Piezometers are read in accordance with appropriate procedures and standards detailed in: DPI NSW, Salinity Training Manual - 2014, Chapter 13.

Current listing of piezometers by area:

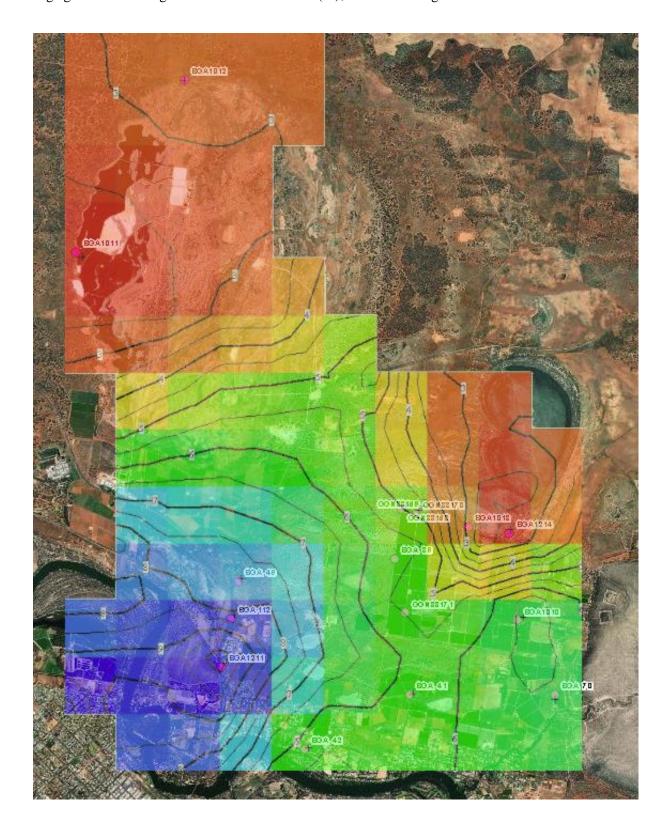
				Buronga			
Site ID	Use Y/N	Top of Pipe above NS (M)	NS (AHD)	Screen depth below top of pipe (M)	Easting	Northing	Condition
BGA 39	Y	0.1	38.77	6.59	611510	6220739	Dry 04Aug17
BGA 41	Υ	0.1	38.65	5.51	611750	6218350	5.76
BGA 42	Υ	0.16	36.84	5.11	609937	6217397	5.27
BGA 49	Υ	0.1	38.54	7.26	608768	6220369	7.61
BGA 70	Υ	0.15	38.64	6.70	614225	6218250	6.42
BGA 94	N	0.03	37.79	destroyed	608828	6217974	Destroyed @ 07Aug17
BGA 112	Υ	0.1	38.52	7.67	608647	6219723	7.63
BGA 113	Υ	0.09	37.21	dry	608286	6219773	Dry @ 04Aug17
BGA1010	Υ	0.17	38.58	6.73	613675	6219700	7
BGA1011	Υ	0.22	33.44	2.67	606000	6226025	2.3
BGA1012	Υ	0.15	33.50	2.20	607775	6229125	3.13
BGA1013	Υ	0.5	33.15	1.70	613025	6221300	1.83
BGA1080	Υ	0.16	35.40	dry	612100	6218225	Dry @ 04Aug17
BGA1211	Y	0.2	NK	10.12	608450	6218875	10.32
BGA1214	Y	0.3	34.41	2.49	613450	6221225	2.64
GGN 88168	Υ	0.55	NK	5.28	611628	6221659	5.12
GGN 88169	Υ	0.5	NK	3.96	611917	6221650	3.85
GGN 88170	Y	0.52	NK	6.59	611861	6221572	6.44
GGN 88171	Y	0.33	NK	5.81	611657	6219793	Destroyed @13Aug19
GGN 88172	Ν	0.68	NK	destroyed	611532	6219385	Destroyed @ 07Aug17

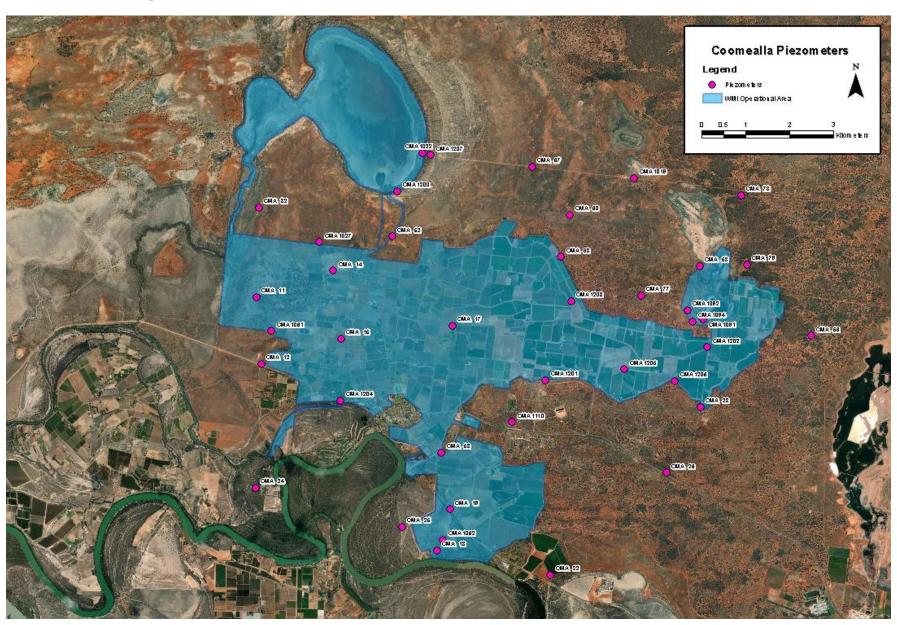
				Coomealla	ı		
Site ID	Use Y/N	Top of Pipe above NS (M)	NS (AHD)	Depth below top of pipe (M)	Easting	Northing	Condition
CMA 11	Y	0.15	47.15		592475		Dry @ 02Aug17
CMA 12	Y	0.12	45.92		592892	6227823	Destroyed 15Sep19
CMA 13	N .	0.34	38.61	Destroyed	592925		Dry 15Sep19
CMA 14	Y	0.09	41.81		594525		Dry @ 02Aug17
CMA 15	Y	0.03	35.28	-	594699		Destroyed @15Sep19
CMA 17	Y	0.1	47.08		597298		Destroyed @15Sep19
CMA 19	N	0.4		Destroyed	597311		Destroyed @ 02Aug17
CMA 22	Y	0.07	38.34		599484	6223007	
CMA 23	Y	0.12	51.22		602968	6226852	-
CMA 24	N N	0.28		Destroyed	592875		Destroyed @ 02Aug17
CMA 25	Y	0.08	35.83		596130	6224133	
CMA 26	Y	0.04	54.09		602096	6225347	
CMA 52	Υ	0.15	39.25		595870		Dry @ 02Aug17
CMA 53	Υ	0.07	53.2		597031		Dry @ 02Aug17
CMA 56	N	0.075		Destroyed	605451		Destroyed @ 02Aug17
CMA 58	Υ	0.18	35.58		602810		Dry @ 02Aug17
CMA 60	Υ	0.15	48.57		599888		Dry @ Aug18
CMA 63	Υ	0.07	47.3	Dry	599739		Dry @ 02Aug17
CMA 67	Y	0.11	48.94		599068		Dry @ 15Sep19
CMA 77	Υ	0.22	51.07	Dry	601564	6229345	Dry @ 04Aug17
CMA 78	Υ	0.16	44.25	Dry	603888	6231673	Dry @ 04Aug17
CMA 79	Υ	0.14	40.56	Dry	603980		Dry @ 04Aug17
CMA 82	Y	0.12	35.59	Dry	592849	6231395	Dry @ 04Aug17
CMA1019	Υ	0.2	36.1	Dry	601450		Destroyed @ 15Sep19
CMA1022	Υ	0.36	32.09	1.99	596325	6232700	
CMA1027	Υ	0.33	40.67	10.23	594300	6230725	10.06
CMA1061	Υ	0.36	42.36	11.98	593150	6228525	11.77
CMA1062	Y	0.34		Dry	597025	6223775	Dry @ 04Aug17
CMA1091	Υ	0.3		3.11	603075	6228950	2.93
CMA1092	Υ	0.25		Dry	602775	6229150	Dry @ 04Aug17
CMA1094	N	0.4		Destroyed	602875		Destroyed @ 04Aug17
CMA1110	N			Destroyed	598750		Destroyed @ 04Aug17
CMA1200	Y	0.26	34.09	3.91	595975	6232150	3.65
CMA1201	Υ	0.28		19.89	599275	6227425	19.74
CMA1202	Y	0.32		4.43	603025	6228250	4.28
CMA1203	Y	0.4		5.78	599800	6229075	5.7
CMA1204	Υ	0.34		10.71	594675	6226925	Dry @ 15Sep19
CMA1205	Υ	0.4		10.05	601300	6227675	
CMA1206	Υ	0.2		18.52	602325	6227425	
CMA1207	Y	0.34	37.67		596650	6232625	

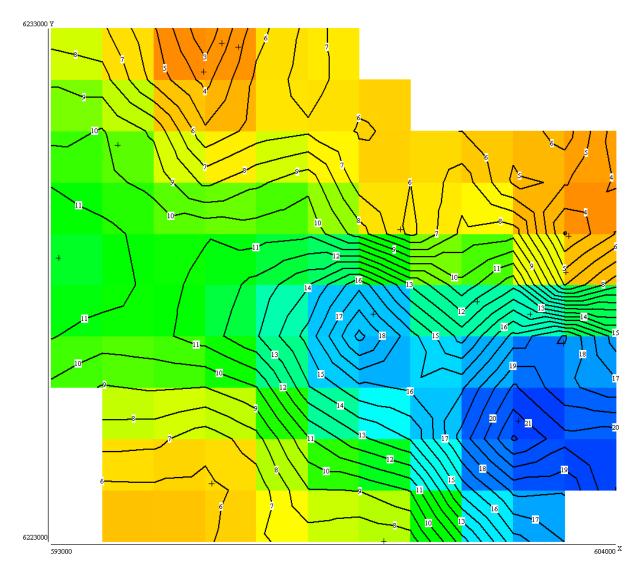
				Cu	rlwaa		
Site ID	Use Y/N	Top of Pipe above NS (M)	NS (AHD)	Depth below top of pipe (M)	Easting	Northing	Condition
CWA 1/A CWA 5	Y Y	0.2	35.89 33.07		590180 589106	6224995 6225671	5.69 Dry @ 09Aug2017
CWA 5	GC	0.08	35.14	ury 5.89	588966	6225938	6.04
CWA 11/A	Y	0.2	33.1		587690	6226720	Destroyed @ 10Sep19
CWA 12	Y	0.22	35.4		590197	6224932	4.83
CWA 13	N	0.03		destroyed	587515	6223575	Destroyed @ 09Aug2017
CWA 15	N	0.3		destroyed	588235	6225525	Destroyed @ 09Aug2017
CWA16s	GC	0.46	34.36	5.78	588965	6226025	5.06
CWA 19 CWA 21/A	N Y	0.26 0.23	34.35 35.21	destroyed	590592 587155	6227997 6226355	Destroyed @ 09Aug2017 Destroyed @ 10Sep19
CWA 21/A	Y	0.25	33.28	3.49	591120	6225815	3.59
CWA 25	N .	0.4		destroyed	588951	6223709	Destroyed @ 09Aug2017
CWA 27	GC	0.16		destroyed			Destroyed @ 10Sep19
CWA 28	GC	0.18	34.36	4.7			5
CWA 31	N	0		destroyed	589300	6226890	Destroyed @ 09Aug2017
CWA 41	Y	0.15	36.42	6.33	591650	6225490	6.56
CWA 48 CWA 50	GC GC	0.14 0.17	35.82 35.52	5.96 5			6.15 5.21
CWA 50	GC	0.17	35.32	4.98	589970	6225560	5.27
CWA 51	GC	0.06	35.52	5.61	590120	6225640	5.95
CWA 60	GC	0.26	35.52	5.3			5.55
CWA 80	Υ	0.07	35.12	5.69	587385	6224900	Destroyed @ 10Sep19
CWA 81	GC	0.08	33.56		588248	6226209	Dry @ 09Aug2017
CWA 82	Y	0.22	34.89		588578	6224649	Dry @ 09Aug2017
CWA 84 CWA 85	Y N	0.06 0.09	33.88	3.33 destroyed	588892 588515	6224491 6223035	3.4 Destroyed @ 09Aug2017
CWA 85	Y	0.09	33.88	destroyed 4.52	589067	6223662	4.43
CWA 87	Y	0.12	34.38	4.87	589079	6222362	3.92
CWA 88	Ϋ́	0.09	35.42	4.65	589288	6224374	4.69
CWA 89	Υ	0.02	35.5	5.06	589732	6224824	5.34
CWA 90	Υ	0.15	33.8	4.18	588410	6224485	4.21
CWA 91/L	GC	0.15	33.5	4.04	588855	6225375	4.15
CWA 92	N Y	0.16		destroyed	586731	6224136	Destroyed @ 09Aug2017
CWA 93 CWA 98	Y Y	0.11 -0.03	34.44 35.96	ary 5.44	589990 591930	6225950 6224150	Dry @ 09Aug2017 5.65
CWA 98	Y	0.2	36.52	6.26	592170	6224520	6.37
CWA 100	Y	0.7	35.36	5.05	591170	6224850	DestroyedAug2020
CWA 101	Υ	0.15	36.24	dry	591780	6225240	Dry @ 09Aug2017
CWA 102	Υ	0.13	35.83	5.93	592020	6225660	6.39
CWA 103	Y	0.08	37.78		591795	6226050	Destroyed 10Sep19
CWA 104 CWA 105	GC Y	0.15 0.23	35.15 34.34	5.66	589690 590533	6227510 6225685	5.8
CWA 105	N I	0.23		destroyed	586780	6224807	Dry @ 09Aug2017 Destroyed @ 09Aug2017
CWA 113	N			destroyed	588670	6223255	Destroyed @ 09Aug2017
CWA 115	N			destroyed	588740	6223660	Destroyed @ 09Aug2017
CWA 119	N			destroyed	589170	6224490	Destroyed @ 09Aug2017
CWA 142	N			destroyed			Destroyed @ 09Aug2017
CWA 150	N N			destroyed	587130	6225355	Destroyed @ 09Aug2017
CWA 162	Y	0.1	34.6	dry destroyed	591180 590380	6225620 6226475	Destroyed @ 10Sep19 Destroyed @ 09Aug2017
CWA 165 CWA 167	N N	0.15 0.01		destroyed	590380 589555	6226485	Destroyed @ 09Aug2017 Destroyed @ 09Aug2017
CWA 107	N	0.01		destroyed	588375	6226605	Destroyed @ 09Aug2017 Destroyed @ 09Aug2017
CWA 174	GC	0.1	34.69	dry	588795	6226890	Destroyed @ 10Sep19
CWA 177	GC	0.02	35.69		590005	6226945	Destroyed @ 10Sep19
CWA 178	Y	0.005	34.26		590360	6226500	Destroyed @ 10Sep19
CWA 179	Y	0.13	34.81		590720	6226420	Dry @ 09Aug2017
CWA 180	GC GC	0.12	35.58 34.21		590720 588785	6226910	Dry @ 09Aug2017
CWA 185 CWA 187	GC	0.02 0.005	34.21 35.5		588785 588372	6227310 6227446	Dry @ 09Aug2017 Destroyed 10Sep19
CWA 187	Y	0.003	35.27		589198	6227779	Dry @ 09Aug2017
CWA 195	Υ	0.09	35.18		589585	6227785	Destroyed 10Sep19
CWA 196	Υ	0.15	35.22	dry	589170	6227790	Destroyed 10Sep19
CWA 198	Υ	0.09	35.43		588790	6228165	Destroyed 10Sep19
CWA 199	Y	0.09	35.18			005	Destroyed 10Sep19
CWA1039	Y	0.22	34.72		590900	6225375 6225850	Dry @ 09Aug2017
CWA1041 CWA1044	GC Y	1.2 0.32	34.35 34.06	4.74 3.96	588600 588050	6223275	5.06 3.91
CWA1044	Y	0.32	35.19	5.13	588000	6224175	4.93
CWA1060	Y	0.24	34.66	5.04	591325	6228350	5.05
CWA1083	Υ	0.3	34.63	4.65	589325	6224800	4.32
CWA1084	Y	0.2	34.93	4.3	588775	6224100	Destroyed 10Sep19
CWA1085	Y	0.18	32.36	4.85	589075	6225650	4.98
CWA1086	Y Y	0.32	34.88	4.89	591375 500575	6225275	4.94
CWA1087 CWA1088	Y Y	0.08 0.16	35.88 35.85	6.4 6.7	590575 590175	6225650 6227400	6.2 6.53
CWA1088	Y	0.10	33.69	4.65	587450	6229100	4.74
J	<u> </u>	Ų. 17 J	00.00	-1.00	007-100	3220100	1

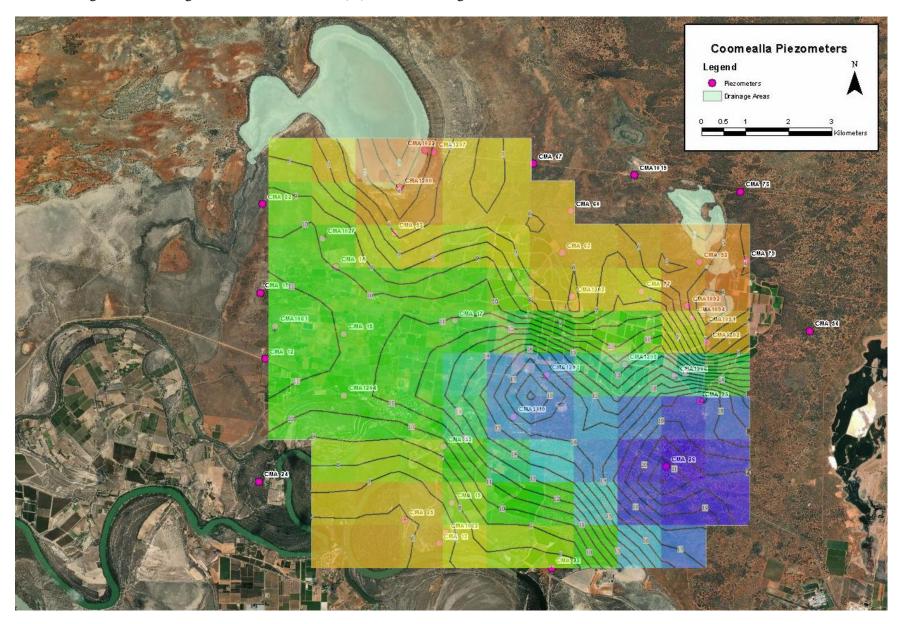

Attachment 2, p.2 - Condition 1

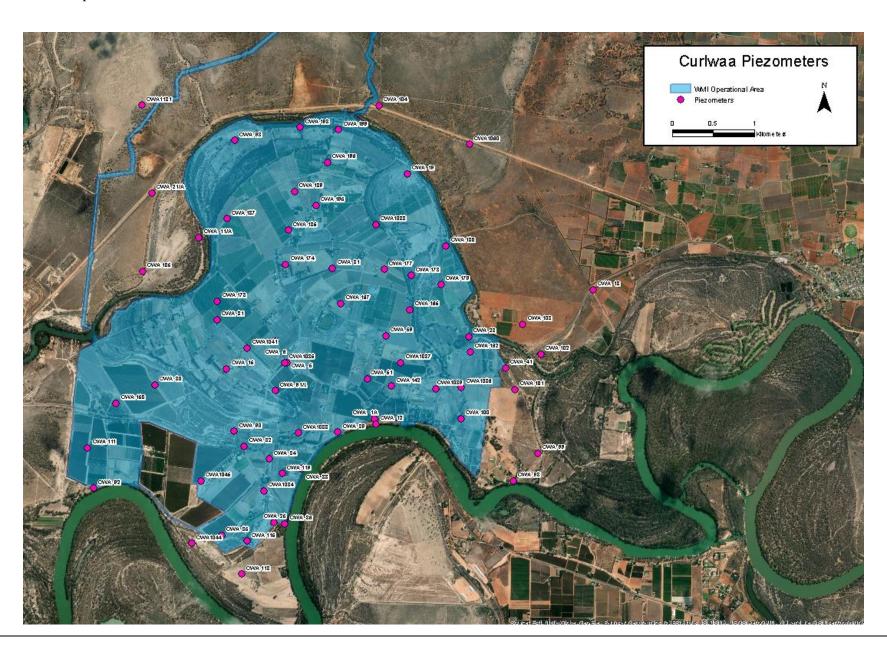
Map of groundwater depth below natural surface @ 2M contour intervals and including first 1M. Dry/destroyed piezometers are not used for constructing contour lines.

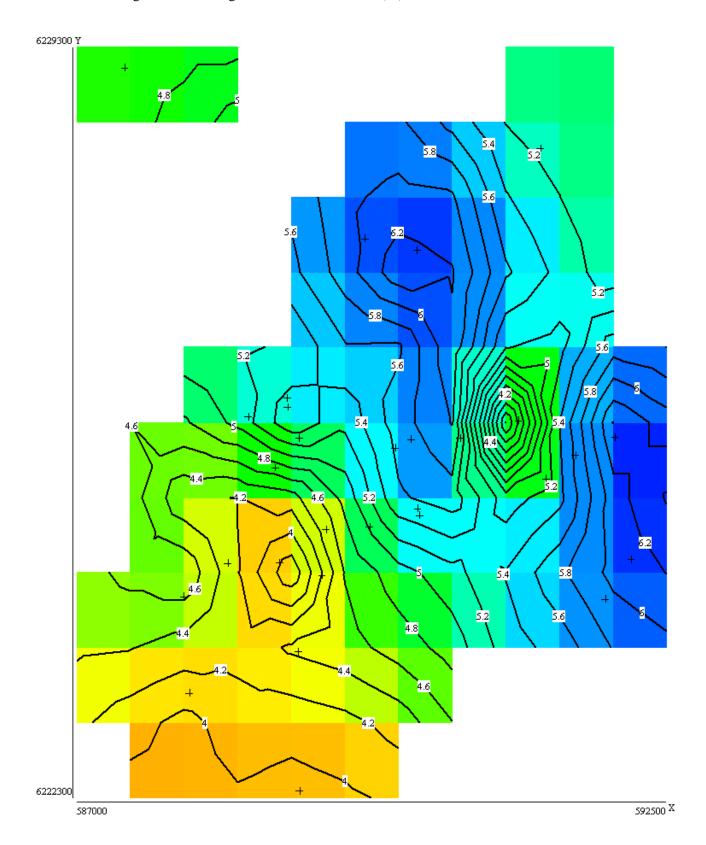

Location of Buronga Piezometers:

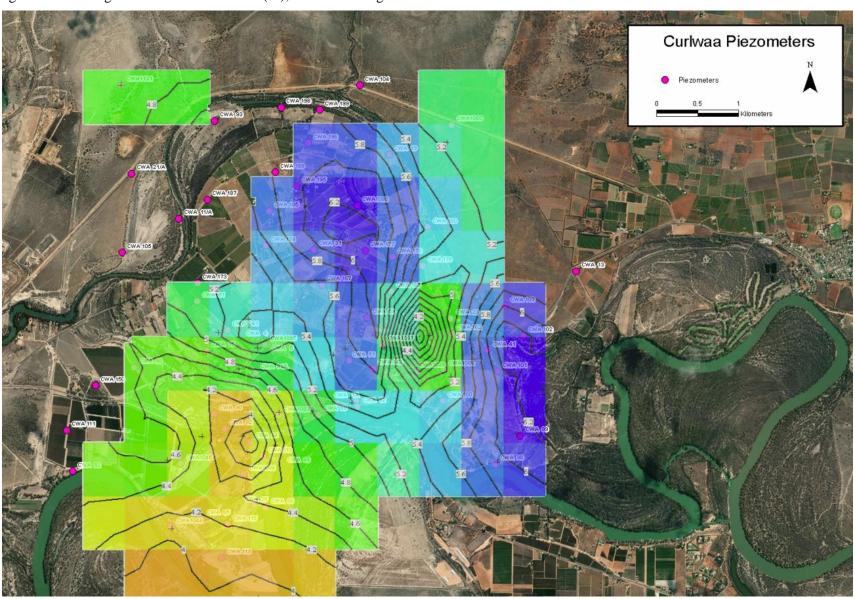

Buronga groundwater heights below natural surface (M)


Buronga groundwater heights below natural surface (M), combined image:


Location of Coomealla piezometers:


Coomealla groundwater height below natural surface (M):


1.1.1.1. Coomealla groundwater heights below natural surface (M), combined image:


Location of Curlwaa piezometers:

Curlwaa groundwater height below natural surface (M):

Coomealla groundwater heights below natural surface (M), combined image:

Attachment 2, p.2 - Condition 2.

No consultation with the minister required, where levels have risen above the historical reference.

Contour maps have been provided at condition 1; groundwater levels have remained low for 2020/21. Continuing dry conditions have slowed down groundwater recharge; all piezometers are read in August/September of each year.

Attachment 2, p.2 - Condition 3.

Table of the area (ha) of shallow (<2M), moderate (2-4M) and >4M groundwater depth.

Approximate areas at different depths of groundwater (Ha)									
<2M 2-4M >4M Total mapped area									
Buronga	450	2340	6570	8910					
Coomealla	0	200	9500	9700					
Curlwaa	0	315	2275	2590					

• Evaporation basins form a large part of our area of operations, the figures indicate this as being a large area of high groundwater, whereas it is a low laying drainage/evaporation basin.

Attachment 2, p.2 – Condition 4.

Table of the change in the three depth class areas (ha) within the area of operations, relative to the previous and historical reference years:

Approximate areas at different heights of groundwater (ha)

		2020/21		
	<2M	2-4M	>4M	Total op. area
Buronga	0	30	627	657
Coomealla	0	0	4,181	4,181
Curlwaa	0	5	1,636	1,641
		2019/20		
	<2M	2-4M	>4M	Total op. area
Buronga	0	35	622.29	657
Coomealla	0	200	3980.74	4,181
Curlwaa	0	90	1551	1,641
		2018/19		
	<2M	2-4M	>4M	Total op. area
Buronga	0	52.5	604.79	657
Coomealla	0	200	3980.74	4,181
Curlwaa	0	70	1571	1,641
		2010/11		
	<2M	2-4M	>4M	Total op. area
Buronga	3.2	13.75	640.34	657
Coomealla	473.55	204.28	3502.91	4,181
Curlwaa	0	54.91	1586.09	1,641

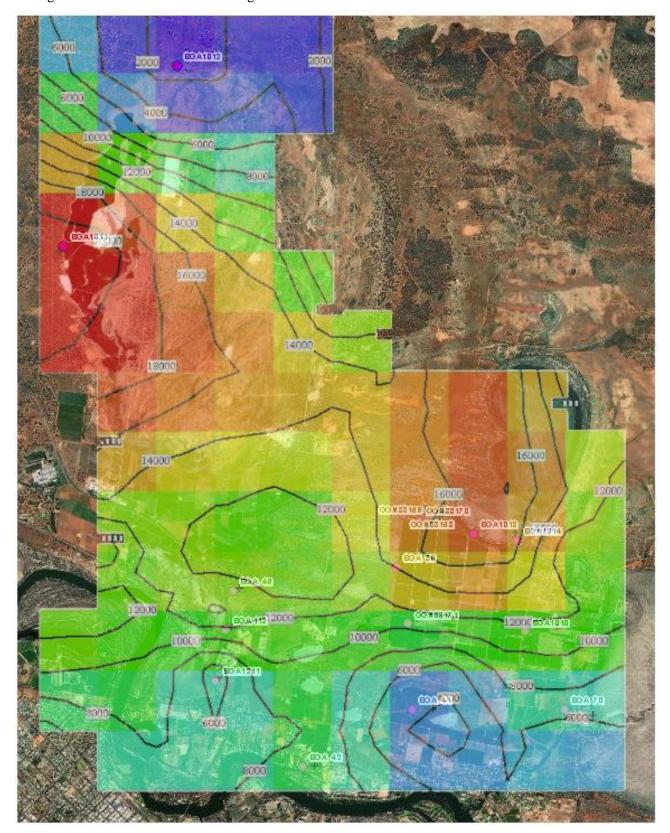
	2020/21 - 20	019/20 differe	nce (ha)		
	<2M	2-4M	>4M		
Buronga	0	-5	5		
Coomealla	0	-200	200		
Curlwaa	0	-85	85		
	2019/20 - 20	018/19 differe	nce (ha)		
	<2M	2-4M	>4M		
Buronga	0	-17.5	17.5		
Coomealla	0	0	0		
Curlwaa	0	20	-20		

_									
	2020/21 - 20	2020/21 - 2010/11 difference (ha)							
	<2M	2-4M	>4M						
Buronga	-3.2	16.25	-13.05						
Coomealla	-473.55	-204.28	677.83						
Curlwaa	0	-49.91	49.91						
	2019/20 - 20	010/11 differe	nce (ha)						
	<2M	2-4M	>4M						
Buronga	-3.2	21.25	-18.05						
Coomealla	-473.55	-4.28	477.83						
Curlwaa	0	35.09	-35.09						

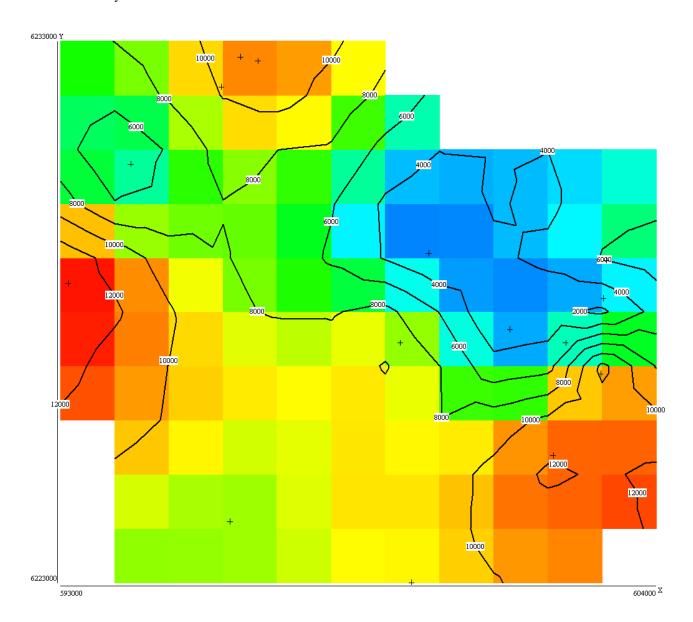
River has remained at normal level and low rainfall has not charged the water table. Water table appears to have dropped slightly in all areas. 2010/11 has been used as a significant historical year; up until August 2010 the prior year was close to average rainfall, followed by the wettest year ever. Groundwater monitoring and SIS review made an observation that significant rainfall changes the groundwater temporarily; below are monthly rainfall figures covering this monitoring period.

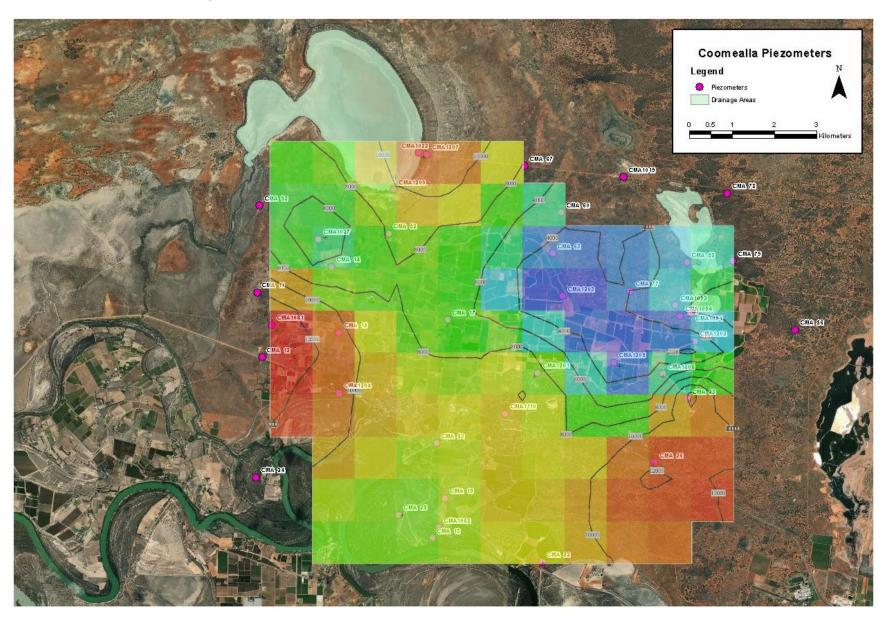
Monthly rainfall BOM – Mildura Airport:

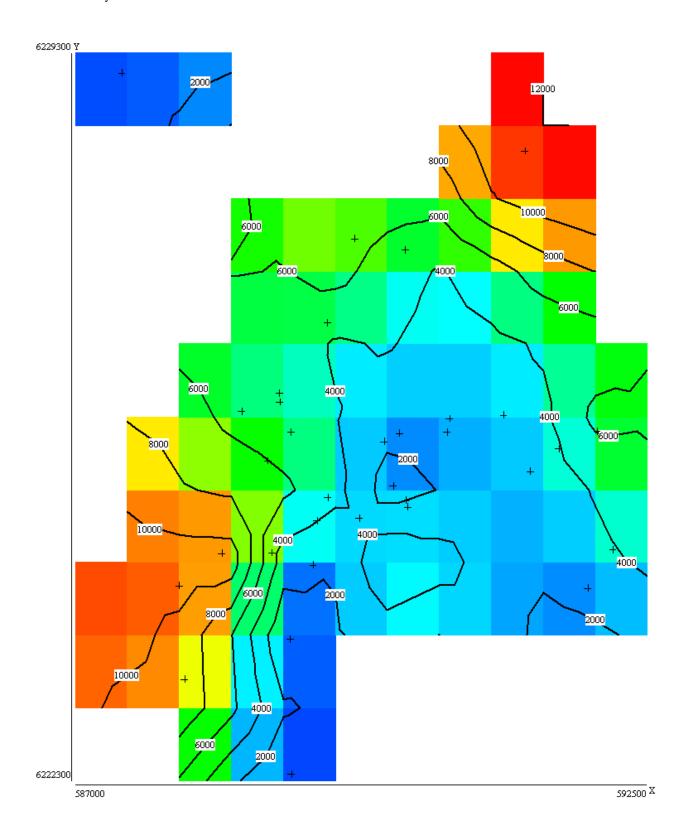
Monthly r	ainiaii	BOM	– Mila	lura Al	rport:										
Season	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Total	Total 2 years	Total 3 years
2009/10	11.8	8.2	30.4	10.8	65.6	13.2	8.4	19.8	35.8	18.8	51.2	14.6	288.6	517.6	668.4
2010/11	25.6	28.8	54.8	88.8	103.6	141.0	129.4	192.6	122.0	12.6	14.2	10.6	924.0	1,212.6	1,441.6
2011/12	15.4	20.8	7.2	27.6	43.4	61.8	12.6	36.6	64.2	4.0	2.6	8.0	304.2	1,228.2	1,516.8
2012/13	41.4	17.0	13.6	7.0	4.6	4.4	1.2	14.6	10.8	6.2	29.2	35.8	185.8	490.0	1,414.0
2013/14	14.8	10.4	18.8	14.4	2.4	57.8	0.6	67.2	29.2	58.4	22.8	6.4	303.2	489.0	793.2
2014/15	13.0	18.2	18.6	0.6	13.4	9.6	57.0	0.6	0.0	93.0	10.2	30.6	264.8	568.0	753.8
2015/16	11.6	12.0	13.0	3.8	6.0	1.6	68.2	0.2	0.4	3.0	43.4	18.2	181.4	446.2	749.4
2016/17	19.2	30.8	93.6	24.8	51.2	5.6	29.4	5.2	4.2	44.0	19.6	1.8	329.4	510.8	775.6
2017/18	4.0	34.0	4.0	23.0	55.4	45.0	3.4	0.2	2.2	1.8	17.4	19.2	209.6	539.0	720.4
2018/19	3.4	10.6	0.8	12.2	19.2	44.6	2.6	2.8	3.0	1.8	48.0	13.4	162.4	372.0	701.4
2019/20	10.4	5.4	12.0	0.0	13.8	2.6	2.8	11.0	27.6	48.6	48.1	8.4	190.7	353.1	562.7
2020/21	10.4	41.6	25.0	59.0	5.2	8.6	45.0	0.2	4.8	0.0	8.0	30.6	238.4	429.1	591.5
	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Total		
50 Yr Average	23.2	25.2	27.1	28.2	25.5	27.0	24.6	20.3	16.8	21.1	23.0	21.1	283.1		
Max Year in 50	53.6	74.8	93.6	120.6	103.6	181.2	129.4	192.6	122.0	120.4	70.2	82.2	924.0	2010/11	924.0
Min Year in 50	0.6	1.2	0.8	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	97.4	1982/83	97.4


Attachment 2, p.2 – Condition 5

Groundwater salinity @ 0-2000, -5000,-10,000, -20,000,-30,000,-40,000 micro-Siemens/cm contours:


Buronga Salinity Contours:


Buronga Salt Contours – Combined Image:


Coomealla Salinity Contours:


Coomealla Salt Contours – Combined Image:

Curlwaa Salinity Contours:

Coomealla Salt Contours – Combined Image:

Tabulated approximate salinity (microSiemens/cm) interval areas, within areas of operations boundary, relative to the previous and historical reference year:

Approximate areas at different EC of groundwater (ha)

	2020/21														
	0-2000	-5000	-10000	-20,000	-30,000	-40,000	Total op. area								
Buronga	0	90	210	357	0	0	657								
Coomealla	0	1200	2231	750	0	0	4,181								
Curlwaa	0	525	1046	70	0	0	1,641								
				2019/20											
	0-2000	-5000	-10000	-20,000	-30,000	-40,000	Total op. area								
Buronga															
Coomealla 0 900 1400 1881 0 0 4,181															
Curlwaa 315 560 556 210 0 0 1,641															
2018/19															
	0-2000	-5000	-10000	-20,000	-30,000	-40,000	Total op. area								
Buronga	0	100	500	57	0	0	657								
Coomealla	5	1120	1656	1400	0	0	4,181								
Curlwaa	280	735	521	105	0	0	1,641								
				2010/11											
	0-2000	-5000	-10000	-20,000	-30,000	-40,000	Total op. area								
Buronga	7	20	154	141	148	188	657								
Coomealla	123	615	984	1312	943	205	4,181								
Curlwaa	43	756	194	432	130	86	1,641								

	2020/21 - 2019/20 difference (ha)														
	0-2000	-5000	-10000	-20,000	-30,000	-40,000									
Buronga	0	0	-87	87	0	0									
Coomealla	0	300	831	-1131	0	0									
Curlwaa -315 -35 490 -140 0															
	2019/20 - 2018/19 difference (ha)														
	0-2000	-5000	-10000	-20,000	-30,000	-40,000									
Buronga	0	-10	-203	213	0	0									
Coomealla	-5	-220	-256	481	0	0									
Curlwaa	35	-175	35	105	0	0									

		2020/21 -	2010/11 diffe	rence (ha)		
	0-2000	-5000	-10000	-20,000	-30,000	-40,000
Buronga	-7	70	56	216	-148	-188
Coomealla	-123	585	1247	-562	-943	-205
Curlwaa	-43	-231	852	-362	-130	-86

Attachment 2, p.2 – Condition 6.

It is unknown whether there are alternative presentation formats approved by the minister, therefore presentation is as close as possible to requested.

Attachment 2, p.3

Groundwater Control bores (Tubewells) Details

The tubewells have been mainly inoperative due to low groundwater levels, maintenance runs have only been carried out, Knipes remains inoperative as explained earlier in the report:

District Work/Site Id	lentifier	Curlwaa CWA1										Details s (WGS84)		Type Dimensions		Submersible 100mm	Pumps	
Name Representing	g discharge	Tubewell Pu Discharge to		Creek						ı	E		N	Capacity		X- Section = 2 ML/D	0.01m ²	
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site \	Visits
Volume (ML	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0 ML	0.0	0.0	0.0	Flow	No Flow
Salt Load (T	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0 T	0.0	0.0	0.0	FIOW	INO FIOW
Average E0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		0	0	NA	0	52

District Work/Site Identifie	r	Curlwaa CW 2									Location Coordinate	n Details s (WGS84)		Type Dimensions		Submersit 100mm	•	
Name Representing disc	harge	Tubewell F Discharge	•							E	≣	1	N	Capacity		X- Section 0.5 ML/D	= 0.01m2	!
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 ML	0.0	0.0	0.0	Flow	No Flow
Salt Load (T)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00 T	0.0	0.0	0.0	FIOW	INO FIOW
Average EC	0	NA	0	0	NA	0	0	0	0	0	NA	0		0	0	NA	0	52

District Work/Site Identifie	r	Curlwaa CW 3			-							n Details es (WGS84)		Type Dimensions		Submersible Pump 100mm			
Name Representing disc	harge	Tubewell F Discharge	•							ı	E	ı	N	Capacity		X- Section 0.5 ML/D	= 0.01m ²		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits	
Volume (ML)	0.00	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.02	0.0	0.0 ML	0.0	0.0	0.0	Flow	No Flow	
Salt Load (T)	0.0	0.0	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00 T	0.0	0.0	0.0	FIOW	INO FIOW	
Average EC	NA	NA	NA	NA	NA	135	NA	NA	NA	NA	135	NA		135	135	135	2	50	

District		Curlwaa										n Details		Туре		Submersit	ole Pump	
Work/Site Identifier		CW 4									Coordinate	s (WGS84)		Dimensions			2	
Name		Tubewell F	Pump No.3	- Olive Lar	ne											X- Section	$= 0.01 \text{m}^2$	
Representing disch	narge	Discharge	s to Tubew	ell Station							Ε		V	Capacity		0.5 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.00	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.04	0.0	0.1 ML	0.0	0.0	0.0	Flow	No Flow
Salt Load (T)	0.0	0.0	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01 T	0.0	0.0	0.0	FIOW	NO FIOW
Average EC	NA	NA	NA	NA	NA	135	NA	NA	NA	NA	135	NA		135	135	135	2	50

District Work/Site Identifie	er	Curlwaa CW 5	D No. 4	Disele								n Details s (WGS84)		Type Dimensions		Submersit 100mm X- Section	·	
Name Representing disc	charge	Discharge	Pump No.4 s to Tubew							5904	420E	6226	103N	Capacity		0.5 ML/D	= 0.01111	
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.00	0.0	0.00	0.0	0.0	0.02	0.0	0.0	0.00	0.0	0.02	0.0	0.05 ML	0.02	0.00	0.0	Flow	No Flow
Salt Load (T)	0.0	0.0	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.004 T	0.002	0.0	0.0	LIOM	INO FIOW
Average EC	NA	NA	NA	NA	NA	135	NA	NA	NA	NA	135	NA		135	135	135	2	50

Quality Assurance for Monitoring & Reporting

Condition 3.

All monitoring and reporting is carried out in accordance with the DPI NSW publication "Salinity Training Manual" (2014).

Presentation of Data

Condition 4.

There has been no written request from the minister for presentation of any primary monitoring data or other material.

Environment Protection and Management Requirements

Discharge of Noxious Aquatic weeds

Condition 5.

WMI did not identify any noxious aquatic weeds. The natural flow of the river during the year continued to flush weeds through the river system.

Discharge of Blue-Green Algae

Condition 6.

WMI pumps directly from the River Murray and has a fully pipelined system. Blue green algae monitoring on the river is performed by external parties and reported to stakeholders, including WMI. No discharge of Blue-Green Algae.

Basin Salinity Management Strategy

Condition 7.

There were no practices undertaken to increase the salinity debit, however it is evident that WMI has improved salinity management over the long term.
