

ANNUAL COMPLIANCE REPORT

(Combined Approval 60CA581273)

2021/22

Contact: David Hilton - Executive Manager Operations

LICENCE COMPLIANCE REPORT 2021/22

PREFACE

This report is prepared by Western Murray Irrigation Limited (WMI) as part of licence requirements which WMI holds with the NSW Department of Planning and Environment - Water (DPE Water) and the Environmental Protection Authority (EPA). It discusses our annual compliance performance, including the environmental performance and impacts of the works and infrastructure owned or controlled by WMI and the quality of irrigation wastewater discharged from works and infrastructure.

Our environmental programs, which aim to exceed our environmental obligations, demonstrate our commitment to ensuring that our operations do not impact negatively on the environment.

Western Murray Irrigation Limited

Table of Contents

INTRODUCTION	4
STATEMENT OF APPROVAL 60CA581273 – COMPLIANCE OF CONDIT	ONS5
Take of Water	5
MW0655-00001	
MW2452-00001	
Metering Calibration Certificates	6
Water Management Works	15
MW3192-00001	15
MW0491-00001	15
Monitoring and Recording	15
MW2338-00001	15
MW2336-00001	15
MW2337-00001	15
MW0482-00001	
MW2339-00001	
Reporting	45
MW0051-00001	
WWW0051-00001	15
Other Conditions - Monitoring and Recording	15
DK5891-00004	
60CA581273	16
Schedule 1 - Requirements	16
Reporting and Notification Requirements:	16
Submission of an Annual Compliance Report	16
Condition 1	16
Condition 2	16
Condition 2.1	16
Condition 2.2	17
Statement of Compliance	22
Condition 2.3	
Condition 2.4	24
Condition 2.5	
Condition 2.5-Salinity	
Condition 2.5-Discharge	
Condition 2.5-Groundwater	
Condition 2.5-Extraction	
Condition 2.5-Extraction	
Condition 2.6	
Condition 2.7	
Condition 2.8	
New Measures to Limit Groundwater Recharge and Discharge of Salt	

Condition 2.9	32
Reporting on Water Management	33
Condition 2.10	
Condition 2.11	
Condition 2.12	
Condition 2.13	
Reporting on Salinity and Saltload	
Condition 2.14	
Condition 2.15	
Condition 2.16	38
Reporting Groundwater Requirements	39
Condition 2.17	39
Attachment 2- p.1	39
Attachment 2, p.2 - Condition 1	42
Location of Active Buronga Piezometers:	
Buronga groundwater heights below natural surface (M)	
Buronga groundwater heights below natural surface (M), combined image:	
Location of Active Coomealla piezometers:	
Coomealla groundwater height below natural surface (M):	
Coomealla groundwater heights below natural surface (M), combined image:	
Location of Curlwaa active piezometers:	
Curlwaa groundwater heights below natural surface (M), combined image:	
Attachment 2, p.2 - Condition 2.	
Attachment 2, p.2 - Condition 3.	
Attachment 2, p.2 - Condition 3. Attachment 2, p.2 - Condition 4.	
Attachment 2, p.2 – Condition 4	
Buronga Salinity Contours (µ/Siemens):	
Buronga Salt Contours – Combined Image:	
Coomealla Salt Contours – Combined Image:	
Curlwaa Salt Contours – Combined Image:	
Attachment 2, p.2 – Condition 6.	
Attachment 2, p.3	59
Quality Assurance for Monitoring & Reporting	59
Condition 3.	
Presentation of Data	59
Condition 4.	
Environment Protection and Management Requirements	59
•	
Discharge of Noxious Aquatic weeds	
Ochdition 6.	59
Discharge of Blue-Green Algae	60
Condition 6.	60
Basin Salinity Management Strategy	60
Condition 7.	

2021/22 Annual Compliance report

INTRODUCTION

WMI supplies water to customers in its three irrigation areas, Buronga, Coomealla and Curlwaa under Combined Approval Number 60CA581273. The Statement of Approval has a date of effect 01 July 2004 and expiry of 23 February 2030. Details of the Statement of Approval can be found at: https://waterregister.waternsw.com.au/water-register-frame.

Operating licence for Western Murray Irrigation was renewed and amended for a period of ten years on 24th January 2018, published in NSW Government Gazette No 10 of 25th January 2018:

Government Notices

WATER MANAGEMENT ACT 2000

Sections 123 and 124

RENEWAL AND AMENDMENT OF OPERATING LICENCE

NOTICE is given that, pursuant to sections 123 and 124 of the Water Management Act 2000, the Governor of New South Wales has, on 24th January 2018, renewed and amended the Operating Licence of Western Murray Irrigation Limited, for a period of ten years. The renewed Operating Licence commences on the day this notice is published in the NSW Government Gazette.

[n2018-247]

This Compliance Report details the monitoring and reporting activities undertaken by WMI during the 2021/22 financial year to comply with the water management licences. It also outlines irrigation development data that explains the trends in monitoring results.

All mapping details are using projected coordinate system: GDA-1994- MGA-Zone 54.

STATEMENT OF APPROVAL 60CA581273 – COMPLIANCE OF CONDITIONS

Take of Water

MW0655-00001

All water supply works authorised by this approval take water in compliance with the conditions of the access licence under which water is being taken.

MW2452-00001

Water is taken through metering equipment that meet the following requirements:

- A. The metering equipment accurately measures and records the flow of all water taken through the water supply work authorised by this approval.
- B. Status of metering equipment compliance with the current Australian Standard AS 4747: 'Meters for non-urban supply':
 - Buronga pump station meter (1) is pattern approved to NMI-M-10; installed/commissioned 05May21.
 - Coomealla pump station meters (1-6) are pattern approved to NMI-M-10; installed/commissioned 01July2021.
 - Curlwaa pump station meters (1-2) are pattern approved to NMI-M-10. Installed/commissioned 12July21(1) and 12Juny21(2)

Commissioning of Telemetry for DAS – WMI are working with NRAR to commission our existing telemetry in accordance with 'Marketing engagement policy for metering and telemetry; Part 3 – Assessment process for 'other telemetry systems'.

- C. All metering equipment is sited and installed at a place in the pipe, between the water source and the first discharge outlet. There is no flow of water into or out of the pipe, between the water source and the metering equipment.
- D. The metering equipment is always operated and maintained in a proper and efficient manner. Calibration certificates have been performed at different times; there was an initial failure on the Coomealla pump station meters, this was later proven to be a problem with the test equipment, after consulting with Siemens.

Metering Calibration Certificates

Buronga Pump Station.

SUDEL INDUSTRIES PTY LTD

1300 415 512

www.sudelindustries.com PGE156188 | REC27448 | 335158C

INSTRUMENT CALIBRATION REPORT

Western Murray Irrigation Limited Calibration ID: 145170

 Contact : David Hilton
 City : Dareton
 PM Task No :

 Phone : 0429183619
 State : NSW
 Work Order : 372349

Address: 5 Tapio Street Postcode: 2717

Instrument ID BGA MAIN Manufacturer: Siemens

Description 1Y Verification of BGA Main Flowmeter - Model: MAG5100W with MAG

ModBus address 6000 CT
Calibrated 10/Feb/2022 Serial: 974403H280 /

Location Buronga Pumps Classification: Critical Item

Area Previous Inst Status: In Service Equipment ID BURONGA PUMPS

Calibration Data

Origin of Stated Accuracy Manufacturer Specification

Calibration Type: In Service

Document ID: VERIFICATION

Group # Test Type: TaskList.bpl Group Name Verification Group Result: Pass Step# Step Comments Result Converter Test (Enter Pass / Fail in Comment) Completed Pass Sensor Insulation (Enter Pass / Fail in Comment) Completed Pass 3 Sensor Magnetism (Enter Pass / Fail in Comment) Completed Pass Enter WO# in Notes on Verification Report Completed

Test Instruments Used During the Calibration: Test Instrument ID Description Manufacturer Model Number Serial Number Last Cal Date Next Cal Date Seimens Magflo Verificator STIN313 Siemens 083F5060 00519N089 21/06/2021 21/06/2022 STIN453 1Y Calibration of Fluke 175 Fluke 26680423 19/05/2021 19/05/2022 Multimeter - Unit belongs to Neil Zander Personel Equipment

Calibration Result: Calibration Successful Performed By: Neil Zander Finalized By: Denise Harrison Finalized Date: 01/03/2022
Calibration Frequency: Annual Next Calibration Date 10/2/2023
Amb. Temp. (DEG.C): Amb. Humidity (%R.H.):

This Certificate and/or report may not be published or reproduced except in full unless permission for the publication/reproduction of an approved extract has been obtained in writing from Sudel industries Pty Ltd. The Tolerances and Test Points set out in this calibration report are selected using Customer advised specifications, manufacturers recommendations or Government Regulation / Statutory Requirement. This report uses guidelines from Australian National standards detailed in AS ISO/IEC 17025 to document the results of the tests, calibrations and/or measurements included in this certificate.

BRANCH PHONE ADDRESS EMAIL

 Adelaide
 (98) 8443 6624
 16 William Street MLE END SA 5031
 adelaide@sudelindustries.com

 Melbourne
 1300 415 512
 10 Rossevelt Street COBURG VIC 3058
 melbourne@sudelindustries.com

 Otyropic Dam
 1300 415 512
 5A Charlon RONZEY DOWNS SA 5725
 odo@sudelindustries.com

 Whyalla
 (06) 8644 0039
 241 McBryde Terrace WHYALLA SA 5600
 whyalla@sudelindustries.com

Printed On 01-Mar-2022 Page 10 of 14

Customer: Name Western Murray Irrigation Ltd Address 5 Tapio Street Dareton NSW 2717 David Hilton Phone 0429 183 619 Email david@westernmurray.com.au

MAGFLO® Identification:		
TAG No./Name	0	
Sensor Code No.	FDK-083X13539	
Sensor Serial No.	982003H280	
Transmitter Code No.	7ME69201AA301AD0	
Transmitter Serial No.	N1M9215020	
Location	Pump A - Coomeala	

<u>Results:</u>			on	Pum Pass Pass Pass	sed sed		
Velocity		Current Outp	out			Frequency	Output
Theoretical	Theoretical	Actual	Deviation	1	Theoretical	Actual	Deviation
0.5m/s	4.800mA	4.802mA	0.27%	(0.500kHz	0.500kHz	0.06%
1.0m/s	5.600mA	5.601mA	0.08%		1.000kHz	1.000kHz	0.02%
3.0m/s	8.800mA	8.802mA	0.03%	;	3.000kHz		0.04%
	Current Outpu	t 4-20mA	•	F	requency Ou	tput 0-10kHz	•

Transmi	tter Settings:	
Basic	Qmax. Flow Direction Low flow Cut-off Empty Pipe	1750.00 l/s Positive 1.50% ON
Output	Current Output Time Constant Relay Output Digital Output Frequency Range Time Constant Volume/pulse Pulse width Pulse polarity	N/A Error Level Pulse N/A N/A 1.0 m³/p 0.066 sec. Positiv
Totalizer Totalizer Totalizer	1 value before test 1 value after test 2 value before test 2 value after test g time in days	4242.9685 MI 4242.969 MI 0.07826065 MI 0.07826065 MI 399

Sensor Details:	
Size	DN 500 20 IN
Cal. Factor	239.27409363
Correction Factor	1.0
Excitation Freq.	1.563Hz

Verificator Details (083F5060)		
Serial No.	N1DO140060	
Device No.	130046	
Software Version	1.40	
PC-Software Version	5.01	
Cal. date	2022.03.04	
ReCal. date	2023.03.04	

Comments

These tests verify that the flowmeter is functioning within 2% deviation of the original test parameters.

Verification is traceable to National and International Standards.

Date and signature

Budiman Wiman

2022.05.18 Wiman Budiman

Email

SIEMENS MAGFLO® Verification Certificate

Customer: Name Western Murray Irrigation Ltd Address 5 Tapio Street Dareton NSW 2717 David Hilton Phone 0429 183 619

david@westernmurray.com.au

MAGELO® Identification:		
TAG No./Name	0	
Sensor Code No.	FDK-083X13539	
Sensor Serial No.	982203H280	
Transmitter Code No.	7ME69201AA301AD0	
Transmitter Serial No.	N1MO025053	
Location	Pump B - Coomeala	

Results:		ication file nan smitter or Insulation Magnetion	n	Pump B Passed Passed Passed		
Velocity		Current Outpu	ıt		Frequency	Output
Theoretical	Theoretical	Actual	Deviation	Theoretical	Actual	Deviation
0.5m/s	4.800mA	4.800mA	-0.01%	0.500kHz	0.500kHz	0.03%
1.0m/s	5.600mA	5.600mA	-0.02%	1.000kHz	1.000kHz	0.04%
3.0m/s	8.800mA	8.797mA	-0.05%	3.000kHz		0.02%
	Current Outpu	t 4-20mA		Frequency Ou	tput 0-10kHz	•

Transmitter Settings:				
Basic	Qmax. Flow Direction Low flow Cut-off Empty Pipe	1750.00 l/s Positive 1.50% ON		
Output	Current Output Time Constant Relay Output	OFF N/A Error Level		
	Digital Output Frequency Range Time Constant Volume/pulse Pulse width Pulse polarity	Pulse N/A N/A 1.0 m³/p 0.068 sec. Positiv		
Totalizer Totalizer Totalizer	1 value before test 1 value after test 2 value before test 2 value after test g time in days	3533.7085 MI 3533.70875 MI 0.71529694 MI 0.715297 MI 400		

Sensor Details:	
Size	DN 500 20 IN
Cal. Factor	241.57209778
Correction Factor	1.0
Excitation Freq.	1.563Hz
Excitation Freq.	1.003FIZ

Verificator Details (083F5060)			
Serial No.	N1DO140060		
Device No.	130046		
Software Version	1.40		
PC-Software Version	5.01		
Cal. date	2022.03.04		
ReCal. date	2023.03.04		

Comments

These tests verify that the flowmeter is functioning within 2% deviation of the original test parameters.

Verification is traceable to National and International Standards.

Date and signature

2022.05.18 Wiman Budiman

Customer: Name Western Murray Irrigation Ltd Address 5 Tapio Street Dareton NSW 2717 David Hilton Phone 0429 183 619 Email david@westernmurray.com.au

MAGFLO® Identification:		
TAG No./Name	0	
Sensor Code No.	FDK-083X13539	
Sensor Serial No.	982303H280	
Transmitter Code No.	7ME69201AA301AD0	
Transmitter Serial No.	N1N5275011	
Location	Pump C - Coomeala	

Results:				Pas Pas	mp C ssed ssed		
Velocity		Current Outp	ut	$\overline{}$		Frequency	Output
Theoretical	Theoretical	Actual	Deviation		Theoretical	Actual	Deviation
0.5m/s	4.800mA	4.801mA	0.07%	\neg	0.500kHz	0.500kHz	0.08%
1.0m/s	5.600mA	5.600mA	-0.01%		1.000kHz	1.001kHz	0.06%
3.0m/s	8.800mA	8.799mA	-0.01%		3.000kHz		0.10%
	Current Outpu	t 4-20mA	'	ı	Frequency Ou	tput 0-10kHz	<u>'</u>

Transmi	tter Settings:	
Basic	Qmax. Flow Direction Low flow Cut-off Empty Pipe	1750.00 l/s Positive 1.50% ON
Output	Current Output Time Constant Relay Output	OFF N/A Error Level
	Digital Output Frequency Range Time Constant Volume/pulse Pulse width Pulse polarity	Pulse N/A N/A 1.0 m³/p 0.066 sec. Positiv
Totalizer Totalizer Totalizer	1 value before test 1 value after test 2 value before test 2 value after test g time in days	454.65909375 MI 454.659375 MI 0.01621095 MI 0.01621095 MI 61

Sensor Details:	
Size	DN 500 20 IN
Cal. Factor	237.88490295
Correction Factor	1.0
Excitation Freq.	1.563Hz

Verificator Details (083F5060)			
Serial No.	N1DO140060		
Device No.	130046		
Software Version	1.40		
PC-Software Version	5.01		
Cal. date	2022.03.04		
ReCal. date	2023.03.04		

_					
\mathbf{c}	0	m	m	on	ıts
•	v			CI	шэ

These tests verify that the flowmeter is functioning within 2% deviation of the original test parameters.

Verification is traceable to National and International Standards.

Date and signature

2022.05.18

Wiman Budiman

Custome	<u>r:</u>
Name	Western Murray Irrigation Ltd
Address	5 Tapio Street
	Dareton NSW 2717
	David Hilton
Phone	0429 183 619
Email	david@westernmurray.com.au

MAGFLO® Identification:		
TAG No./Name	0	
Sensor Code No.	FDK-083X13539	
Sensor Serial No.	982503H280	
Transmitter Code No.	7ME69201AA301AD0	
Transmitter Serial No.	N1MO025057	
Location	Pump D - Coomeala	

Results:	Trans	Verification file name or No. Transmitter Sensor Insulation Magnetic Circuit		Pump D Passed Passed		
Velocity		Current Output			Frequency	Output
Theoretical	Theoretical	Actual	Deviation	Theoretical	Actual	Deviation
0.5m/s	4.800mA	4.800mA	-0.05%	0.500kHz	0.500kHz	-0.01%
1.0m/s	5.600mA	5.599mA	-0.04%	1.000kHz	1.000kHz	0.02%
3.0m/s	8.800mA	8.798mA	-0.03%	3.000kHz		0.04%
	Current Output	4-20mA		Frequency Ou	tput 0-10kHz	

Transmi	tter Settings:	
Basic	Qmax. Flow Direction Low flow Cut-off Empty Pipe	1750.00 l/s Positive 1.50% ON
Output	Current Output Time Constant Relay Output Digital Output Frequency Range Time Constant Volume/pulse Pulse width Pulse polarity	OFF N/A Error Level Pulse N/A N/A 1.0 m³/p 0.066 sec. Positiv
Totalizer Totalizer Totalizer	1 value before test 1 value after test 2 value before test 2 value after test g time in days	3584.1285 MI 3584.12875 MI 0.30754599 MI 0.30754611 MI 400

Sensor Details:	
Size	DN 500 20 IN
Cal. Factor	238.91360474
Correction Factor	1.0
Excitation Freq.	1.563Hz

Verificator Details (083F5060)			
Serial No.	N1DO140060		
Device No.	130046		
Software Version	1.40		
PC-Software Version	5.01		
Cal. date	2022.03.04		
ReCal. date	2023.03.04		

Comments

These tests verify that the flowmeter is functioning within 2% deviation of the original test parameters.

Verification is traceable to National and International Standards.

Date and signature

Budiman Distriction by Address William William Company Company

2022.05.18 Wiman Budiman

Customer: Name Western Murray Irrigation Ltd Address 5 Tapio Street Dareton NSW 2717 David Hilton Phone 0429 183 619 Email david@westernmurray.com.au

MAGFLO® Identification:					
TAG No./Name	0				
Sensor Code No.	FDK-083X13539				
Sensor Serial No.	982603H280				
Transmitter Code No.	7ME69201AA301AD0				
Transmitter Serial No.	N1M9045190				
Location	Pump E - Coomeala				

Results:		ication file name or No. smitter or Insulation Magnetic Circuit		ump E assed assed assed		
Velocity		Current Output		Frequency Output		
Theoretical	Theoretical	Actual	Deviation	Theoretical	Actual	Deviation
0.5m/s	4.800mA	4.801mA	0.13%	0.500kHz	0.500kHz	0.07%
1.0m/s	5.600mA	5.601mA	0.05%	1.000kHz	1.000kHz	0.04%
3.0m/s	8.800mA 8.802mA 0.05%		0.05%	3.000kHz		0.08%
Current Output 4-20mA				Frequency Out	put 0-10kHz	

Transmit	tter Settings:	
Basic	Qmax. Flow Direction Low flow Cut-off Empty Pipe	1750.00 l/s Positive 1.50% ON
Output	Current Output Time Constant Relay Output Digital Output Frequency Range Time Constant Volume/pulse Pulse width Pulse polarity	OFF N/A Error Level Pulse N/A N/A 1.0 m³/p 0.066 sec. Positiv
Totalizer Totalizer Totalizer	1 value before test 1 value after test 2 value before test 2 value after test g time in days	3452.17675 MI 3452.177 MI 0.2663273 MI 0.26632733 MI 400

Sensor Details:	
Size	DN 500 20 IN
Cal. Factor	242.16600037
Correction Factor	1.0
Excitation Freq.	1.563Hz

Verificator Details (083F5060)				
Serial No. N1DO140060				
Device No.	130046			
Software Version	1.40			
PC-Software Version	5.01			
Cal. date	2022.03.04			
ReCal. date	2023.03.04			
I				

Comments

These tests verify that the flowmeter is functioning within 2% deviation of the original test parameters.

Verification is traceable to National and International Standards.

Date and signature

Budiman Sylve signal by Budinas William William William Office and Conference on State of Sta

2022.05.18 Wiman Budiman

Email

SIEMENS MAGFLO® Verification Certificate

Customer: Name Western Murray Irrigation Ltd Address 5 Tapio Street Dareton NSW 2717 David Hilton Phone 0429 183 619

david@westernmurray.com.au

 MAGFLO® Identification:

 TAG No./Name
 0

 Sensor Code No.
 FDK-083X13538

 Sensor Serial No.
 979503H280

 Transmitter Code No.
 7ME69201AA301AD0

 Transmitter Serial No.
 N1M9045212

 Location
 Pump F - Coomeala

Results:	Verification file name or No. Transmitter Sensor Insulation Magnetic Circuit		E E	oump F Passed Passed		
Velocity		Current Output		Frequency Output		
Theoretical	Theoretical	Actual	Deviation	Theoretical	Actual	Deviation
0.5m/s	4.800mA	4.799mA	-0.08%	0.500kHz	0.500kHz	-0.07%
1.0m/s	5.600mA	5.600mA	0.00%	1.000kHz	1.000kHz	0.05%
3.0m/s	8.800mA	0mA 8.799mA -0.01%		3.000kHz		0.04%
Current Output 4-20mA			Frequency Out	tput 0-10kHz		

Transmi	tter Settings:	
Basic	Qmax. Flow Direction Low flow Cut-off Empty Pipe	895.000 l/s Positive 1.50% ON
Output	Current Output Time Constant Relay Output Digital Output Frequency Range Time Constant Volume/pulse Pulse width Pulse polarity	OFF N/A Error Level Pulse N/A N/A 1.0 m³/p 0.066 sec. Positiv
Totalizer Totalizer Totalizer	1 value before test 1 value after test 2 value before test 2 value after test g time in days	3121.79 MI 3121.79 MI 0.00839774 MI 0.00839775 MI 400

Sensor Details:	
Size	DN 350 14 IN
Cal. Factor	88.79692078
Correction Factor	1.0
Excitation Freq.	1.563Hz

Verificator Details (083F5060)				
Serial No.	N1DO140060			
Device No.	130046			
Software Version	1.40			
PC-Software Version	5.01			
Cal. date	2022.03.04			
ReCal. date	2023.03.04			

Comments

These tests verify that the flowmeter is functioning within 2% deviation of the original test parameters.

Verification is traceable to National and International Standards.

Date and signature

2022.05.18

Wiman Budiman

Curlwaa Pump Station – Main.

Instrument ID

SUDEL INDUSTRIES PTY LTD

1300 415 512

www.sudelindustries.com PGE156188 | REC27448 | 336158C

Calibration ID: 145172

Work Order: 372349

PM Task No:

INSTRUMENT CALIBRATION REPORT

Western Murray Irrigation Limited

Contact : David Hilton City : Dareton Phone : 0429183619 State : NSW

Address: 5 Tapio Street Postcode: 2717

CWA MAIN Manufacturer: Siemens

Description 1Y Verification of Curlwaa Pumps - CWA Model: MAG5100W with MAG

MAIN 6000 CT

Calibrated 10/Feb/2022 Serial: 918903H480 / N1MO09508

Location Curlwaa Pumps Classification: Critical Item

Area Previous Inst Status: In Service Equipment ID CURLWAA PUMPS

Calibration Data

Origin of Stated Accuracy Manufacturer Specification

Calibration Type: In Service
Document ID: VERIFICATION

Group #		1			TaskList.bpl
Group ?	Vaine	Verification	Gi	oup Result :	Pass
Step#	Step		Result	Comments	
1	Convert	er Test (Enter Pass / Fail in Comment)	Completed	Pass	
2	Sensor I	nsulation (Enter Pass / Fail in Comment)	Completed	Pass	
3	Sensor N	Magnetism (Enter Pass / Fail in Comment)	Completed	Pass	
4	Enter W	O# in Notes on Verification Report	Completed		

Test Instruments Used During the Calibration:							
Test Instrument ID	Description	Manufacturer	Model Number	Serial Number	Last Cal Date	Next Cal Date	
STIN313	Seimens Magflo Verificator	Siemens	083F5060	00519N089	21/06/2021	21/06/2022	

 Calibration Result:
 Calibration Successful
 Performed By:
 Neil Zander

 Finalized By:
 Denise Harrison
 Finalized Date:
 01/03/2022

 Calibration Frequency:
 Annual
 Next Calibration Date
 10/2/2023

Amb. Temp. (DEG.C): Amb. Humidity (%R.H.):

This Certificate and/or report may not be published or reproduced except in full unless permission for the publication/reproduction of an approved extract has been obtained in writing from Sudel industries Pty Ltd. The Tolerances and Test Points set out in this calibration report are selected using Customer advised specifications, manufacturers recommendations or Government Regulation / Statutory Requirement. This report uses guidelines from Australian National standards detailed in AS ISC/IEC 17025 to document the results of the tests, calibrations and/or measurements included in this certificate.

BRANCH

Adelaide (08) 8443 6624 Mebourne 1300 415 512 Olympic Dam 1300 415 512 Whysilia (08) 8644 0039

PHONE

NA MAN 19000000 2700

ADDRESS

16 William Street MLE END SA 5031 10 Roosevelt Street COBURG VIC 3058 5A Charlton Road ROXBY DOWNS SA 5725 241 McBryde Terrace WHYALLA SA 5660 **EMAIL**

adelaide@sudelindustries.com mebourne@sudelindustries.com odo@sudelindustries.com whyalla@sudelindustries.com

Printed On 01-Mar-2022

Page 12 of 14

Curlwaa Pump Station - By-pass

SUDEL INDUSTRIES PTY LTD

1300 415 512

www.sudelindustries.com PGE156188 | REC27448 | 336158C

Calibration ID: 145171 PM Task No:

Work Order: 372349

INSTRUMENT CALIBRATION REPORT

Western Murray Irrigation Limited

Contact : David Hilton City : Dareton Phone : 0429183619 State : NSW

Address: 5 Tapio Street Postcode: 2717

Instrument ID CWA BYPASS Manufacturer: Siemens

Description 1Y Verification of Curlwaa Pumps - CWA Model: MAG5100W with MAG

Bypass - ModBus address 6000 CT

Calibrated 10/Feb/2022 Serial: 978303H280 / N1M9045200

Location Curlwaa Pumps Classification: Critical Item
Area Previous Inst Status: In Service

Equipment ID CURLWAA PUMPS

Calibration Data

Origin of Stated Accuracy Manufacturer Specification

Calibration Type: In Service
Document ID: VERIFICATION

Group #		1		Test Type:	TaskList.bpl
Group I	Name	Verification	Group Result :		Pass
Step#	Step		Result	Comments	
1	Converter	r Test (Enter Pass / Fail in Comment)	Completed	Pass	
2	Sensor In	sulation (Enter Pass / Fail in Comment)	Completed	Pass	
3	Sensor M	agnetism (Enter Pass / Fail in Comment)	Completed	Pass	
4	Enter WC	in Notes on Verification Report	Completed		

Test Instruments	Used During the Calibratic	on:				
Test Instrument ID	Description Seimens Magflo Verificator 1Y Calibration of Fluke 175 Multimeter - Unit belongs to Neil Zander Personel Fouriement	<u>Manufacturer</u>	Model Number	<u>Serial Number</u>	Last Cal Date	Next Cal Date
STIN313		Siemens	083F5060	00519N089	21/06/2021	21/06/2022
STIN453		Fluke	175	26680423	19/05/2021	19/05/2022

Calibration Result: Calibration Successful Performed By: Neil Zander Finalized By: Denise Harrison Finalized Date: 01/03/2022 Calibration Frequency: Annual Next Calibration Date 10/2/2023 Amb. Temp. (DEG.C): Annual Next Calibration Date 10/2/2023

This Certificate and/or report may not be published or reproduced except in full unless permission for the publication/reproduction of an approved extract has been obtained in writing from Sudiel industries Pty Ltd. The Tolerances and Test Points set out in this calibration report are selected using Customer advised specifications, manufacturers recommendations or Government Regulation / Statutory Requirement. This report uses guidelines from Australian National standards detailed in AS ISO/IEC 17025 to document the results of the tests, calibrations and/or measurements included in this certificate.

BRANCH PHONE ADDRESS EMAIL

 Adelaide
 (08) 8443 6624
 16 William Street MLE END SA 5031
 adelaide@sudeIndustries.com

 Mebourne
 1300 415 512
 10 Rossewit Street COBURG VIC 3058
 mebourne@sudeIndustries.com

 Chympic Dam
 1300 415 512
 SA Charthon Road ROXBY DOWNS SA 5725
 odo@sudeIndustries.com

 Whysita
 (08) 8544 9039
 241 McBryde Terrace WHYALLA SA 5500
 whysita@sudeIndustries.com

CNA RIPHARS 19030000 SF2569 Printed On 01-Man-2022 Page 11 of 14

Water Management Works

MW3192-00001

Government-provided metering equipment is not installed on any of WMI water supply works authorised by this approval, any water taken using the works is metered as detailed at MW2452-00001 above.

MW0491-00001

All works authorised by this approval remain in use; there are presently no future plans to decommission the works.

Monitoring and Recording

MW2338-00001

The metered usage is recorded electronically at least every 15 minutes and stored on WMI servers; historical data can be accessed back at least 10 years. Live, end of day and end of month meter readings are also available on the WWW: https://orderwater.westernmurray.com.au/PumpTotalisers sql.asp.

MW2336-00001

The purpose for which water is taken is based on the WMI Crop Report. It is not feasible to create a record each time water is used for type, area, dates of planting and harvesting of each individual owner's crop.

MW2337-00001

The following information is recorded electronically for each 15-minute period that all water is taken:

- A. Time, date, volume of water, start and end times and flowrate.
- B. The access licence number under which the water is taken; also, our order system records individual customer orders; each customer meter is read each quarter.
- C. The approval number under which the water is taken.
- D. Volume of water taken for domestic consumption and/or stock watering is not recorded separately; this is recorded on customer metered outlets.

MW0482-00001

A water meter is installed on all water supply works authorised by this approval, the meter reading is recorded at least every 15 minutes.

MW2339-00001

All works are metered and fitted with a WaterNSW data logger. The metered records are also sent directly to WaterNSW every 15 minutes and daily to MDBA via telemetry; Historical records are also recorded on WMI servers. Western Murray Irrigation are still discussing options with NRAR regarding connection to DAS (Eagle-Eye), utilising our existing telemetry/business systems.

Reporting

MW0051-00001

WMI are not aware any breaches of the conditions on this approval.

Other Conditions - Monitoring and Recording

DK5891-00004

Monitoring and Reporting has been carried out as specified in the 'Western Murray Irrigation Limited Monitoring and Reporting Plan for 60CA581273', dated 16 March 2018, as below.

WMIL - MONITORING AND REPORTING PLAN FOR COMBINED APPROVAL 60CA581273

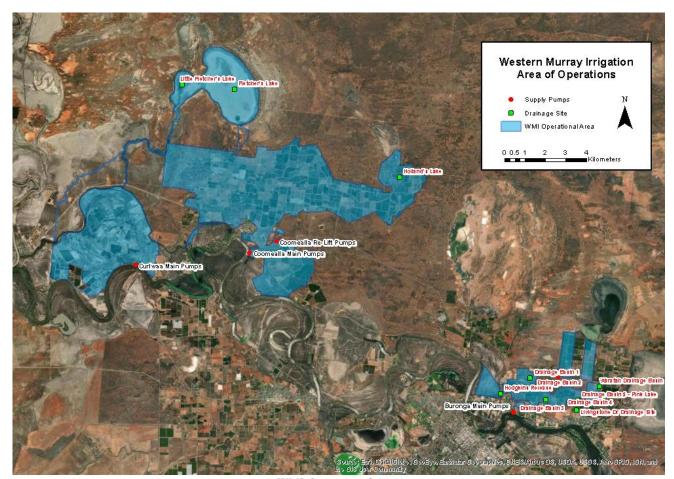
Schedule 1 - Requirements

The Approval Holder of 60CA 581273 has provided all data in the format detailed in each specific requirement of the Monitoring and Reporting Plan, unless otherwise authorised by NRAR. The data has been submitted to the nominated officer within NRAR.

Reporting and Notification Requirements:

Submission of an Annual Compliance Report.

Condition 1

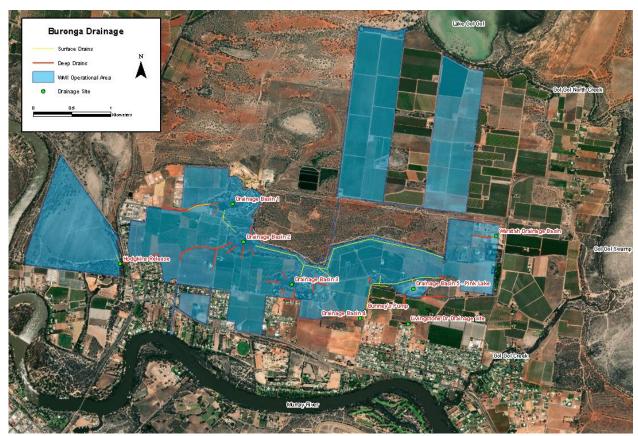

The Approval Holder has, by the 31st of October each year, submitted to the Minister an electronic copy of an Annual Compliance Report for the preceding water year (from 1 July to 30 June). 2 weeks extension has been accepted for 21/22 ACR.

Condition 2

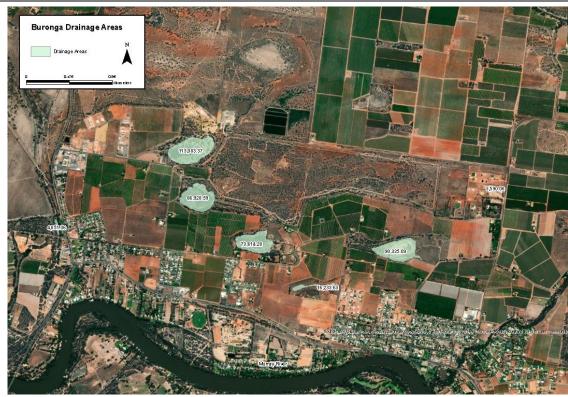
Following are plans of Western Murray Irrigation Limited Infrastructure for the year 2021/22.

Condition 2.1

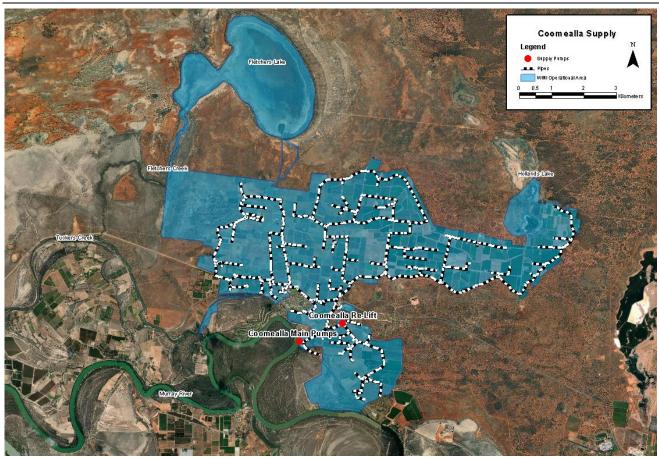
Area of Operations, existing on 30 June 2022, showing, to the Minister's satisfaction, the boundary of all included land and including any amendments made by the inclusion and exclusion of lands in accordance with sections 131 and 135 of the *WMA 2000*, and showing the boundary of any other land water is suppled to that are not included in the Area of Operations. Zero changes to area of operations in financial year 2021/22.

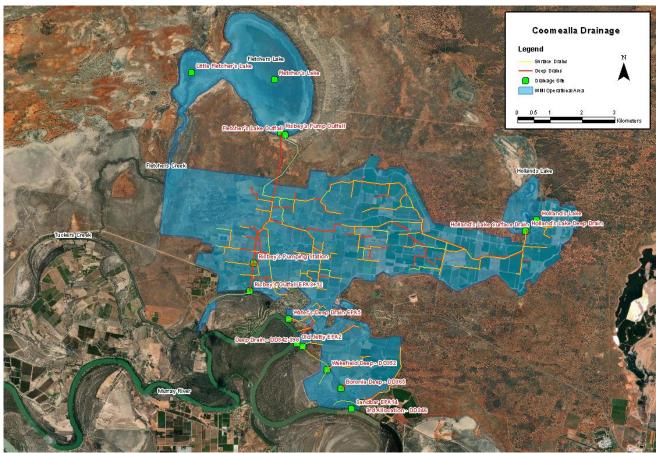

WMI Operational Area

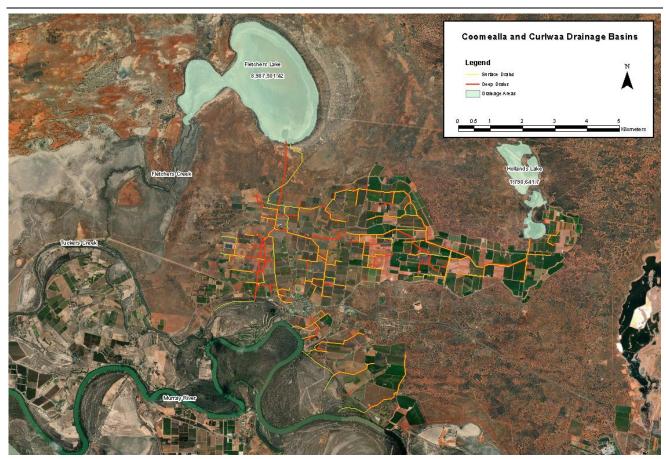
Condition 2.2

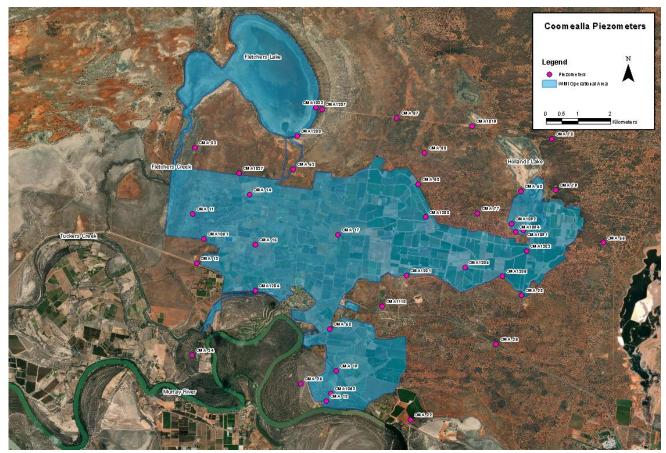

Plans showing current location of Major water courses, Authorised works and supply infrastructure, Drainage infrastructure, Drainage disposal sites and Monitoring sites.

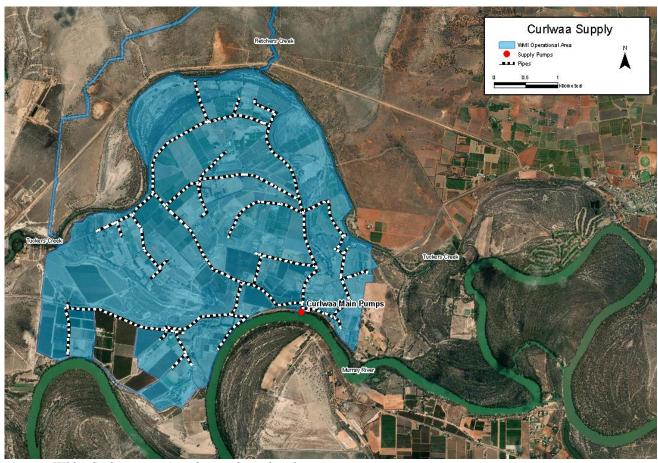
W01 – Buronga supply. Area of operations.

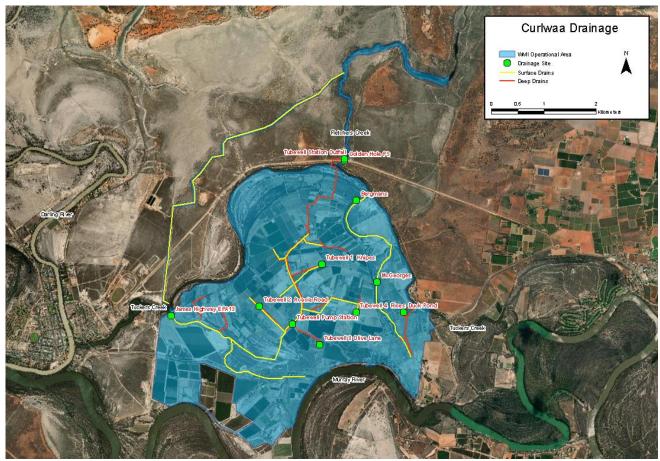

Buronga drainage infrastructure

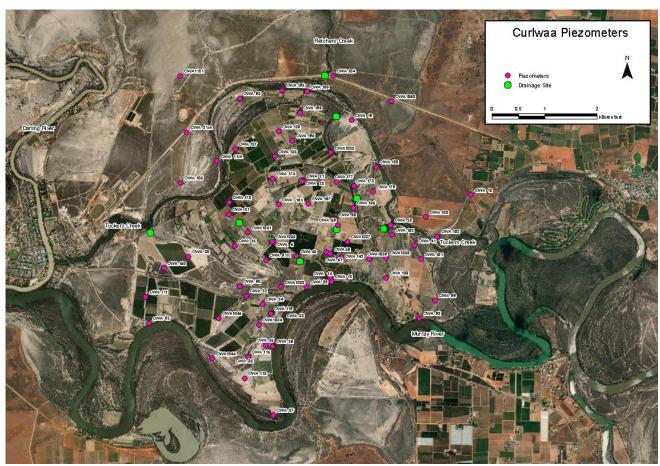

Buronga - Extent of area (square metres) that are temporarily inundated to store drainage and storm water (evaporation basins).


Buronga Piezometers


W02 - Coomealla supply.


Coomealla Drainage Infrastructure


Coomealla and Curlwaa - Extent of area (square metres) that are temporarily inundated to store drainage and storm water (evaporation basins).


Coomealla Piezometers

W03 - Curlwaa pumping plant and supply infrastructure

Curlwaa Drainage Infrastructure

Curlwaa piezometers

Statement of Compliance

Condition 2.3

WMI is in compliance of Approval number 60CA581273.

Groundwater monitoring results showing destroyed, dry, inactive, and active piezometers are included in this report.

The Saltwater Interception Scheme (SIS) is a government project and has operated since the late 1960's under various configurations; maintained by government until 1995 and WMI thereafter. NRAR have informed WMI on 18August2021 there is now a requirement for a works approval and WAL to operate the SIS. WMI has requested further information from NRAR investigating why there is a requirement for WMI to pursue a separate works approval and WAL for a SIS, that is a government project and is already a part of our combined Water Supply Work Approval and Water Usage approval (e-mail dated 05May2022 – Attached).

WMI has attached a consultant's groundwater hydrogeologist report October 2020, this is a long-term audit of our groundwater control and monitoring. This has been used to establish the best course of action for destroyed piezometers. Extract from report:

Recommendations for Groundwater Monitoring

It is recommended that WMI continue monitoring within their operating network to comply with conditions of the water use approval, maintain a consistent data set, and ensure the collection of time series salinity data (which is not routinely collected as part of state monitoring. For the WMI monitoring program going forward the following recommendations may be adopted to confirm and or improve confidence in monitoring data quality. This includes:

- Confirm correct bore location details by taking GPS co-ordinates at each site comparing the results to the existing WMI records and NSW government records to identify the correct dataset. Complete (extract from GIS)
- Measure total bore depth during the next annual monitoring round and comparison of this data to known construction details to confirm that monitoring bores remain open to the aquifer.

Complete

■ Exclude dry bores from ongoing monitoring where the 2019-2020 monitoring data indicates the screen is mostly or completely blocked.

Not yet excluded, screens maybe OK, bore depths not reaching low water table. This will become apparent after large rain event, Nov2022.

■ Survey the natural surface elevation and reference elevation of bores in the current network where this data is unavailable (10 bores) so that depth to water measurements can be compared to river levels and changes in groundwater gradients can be assessed.

Not started.

■ It is recommended that a selection of bores in the WMI network (20%) are surveyed. This data can be compared to the existing data to assess the accuracy of reference elevation data as most sites have no documented survey methodology. Additional survey may then be required to improve confidence in groundwater elevations and the assessment of groundwater trends.

Not started.

Several bores within the WMI networks have been destroyed or are listed as dry, despite this the existing monitoring data provides a relatively good spatial coverage of the irrigation footprint to identify the potential impacts of irrigation and drainage. However, it is recommended that the network distribution be reviewed following the collection of data listed above, particularly confirmation of correct bore locations and measurement of total bore depth. This data can then be used to identify gaps in the current monitoring network and determine if existing bores not currently monitored by WMI can be included in the annual monitoring round or if replacement bores are required where there are gaps. It is then recommended that a groundwater monitoring plan be developed and presented to the regulator to provide an agreed monitoring strategy going forward. This should also include an update of the agreed set of reporting outputs or performance indicators to be included in the annual compliance report.

To be completed after Surveys.

It is also recommended that WMI continue the collection of 3 yearly crop report data to capture changes in irrigation methods, irrigated area, and crops. This is a valuable data set and can be used to support the analysis of groundwater trends.

Recommendations for SIS Operations

The review of the operational and monitoring data indicates that the Curlwaa SIS does not need to operate under current conditions and there is currently no need to refurbish tubewell 1. However, groundwater monitoring data should continue to be collected annually and reviewed against trigger levels to provide a safeguard if groundwater levels begin to rise. Groundwater levels should be reviewed in the context of rainfall and river level data as hydrograph analysis shows that the floodplain aquifer responds to flood and rainfall events which may result in rises in groundwater levels that are only short term. Irrigation supply and method data should also be reviewed with groundwater trends. Previous communications with Department of Natural Resources by WMI have suggested a trigger level of 31.8mAHD (i.e., 1m above pool level) as a trigger to reinstate SIS operation. This trigger level is considered reasonable however it is also proposed that if groundwater levels rise to 31.3 MAHD (0.5m above pool level) this should trigger a review of SIS operations and the development of a plan to reinstate pumping. This is to prevent a significant time lag for reinstating groundwater pumping if the 31.8mAHD level is reached.

"Knipes" Tubewell 1 is now operational after successful rehabilitation.

It has been noted Schedule One - 'Authorised Supply Works' needs to be updated: W02 Work details should read:

- 5 Variable axial flow pumps of 63ML/day each.
- 3 Variable centrifugal pumps of 10 ML/day each

Four original (55.2MLD) pumps have been replaced with more efficient 63MLD pumps, last pump is expected to arrive 22/23.

3 variable centrifugal pumps of 10, 10, 10 MLD – used as auxiliary/winter pumps.

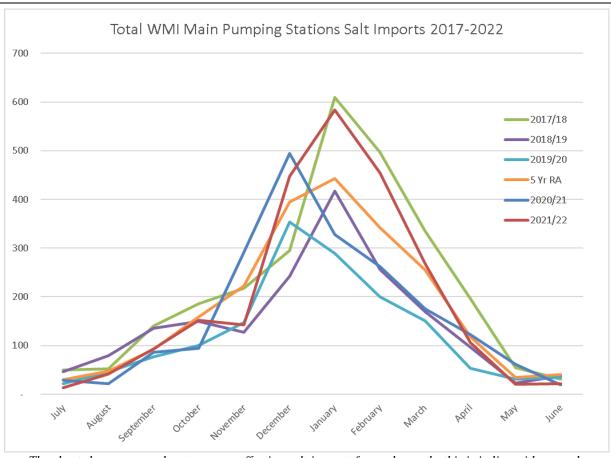
Condition 2.4

Data from all monitoring required by this Monitoring and Reporting Plan has been supplied in electronic format, including:

- PDF of this report.
- Original Excel spreadsheets used for calculations and presentations within this report.
- Other original documents forming part of this report.

Condition 2.5

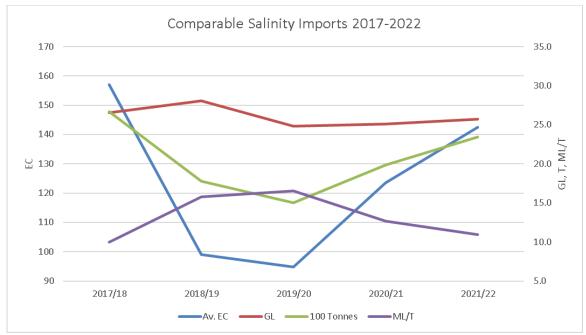
Condition 2.5 has been broken down into Salinity, Discharge, Groundwater, Extraction and Water use, monitoring data.


Condition 2.5-Salinity

There have been no significant salt load discharges and no changes to any works or practices that could lead to increased impact trends on the River Murray. EC is in a normal range of $100-150 \,\mu\text{S/cm}$.

a) Comparable salinity import data for at least 2 years (5 years):

	Total Salt Imports (Tonnes)										
Month	2017/18	2018/19	2019/20	2020/21	2021/22	5 Yr RA					
July	50	46	22	29	14	32					
August	52	79	46	22	42	48					
September	140	135	77	86	93	106					
October	186	149	100	94	152	136					
November	218	127	147	292	142	185					
December	295	242	354	494	447	366					
January	610	417	289	328	583	445					
February	497	256	200	262	455	334					
March	335	170	151	175	268	220					
April	197	97	53	122	107	115					
May	55	23	31	61	20	38					
June	31	38	34	19	21	29					
Year to Date	2,635	1,741	1,470	1,965	2,322	2,027					
Total	2,666	1,779	1,504	1,984	2,343	2,055					
Average EC	163	138	139	114	142.50	139					


O:\Supply\WMIL Supply Figures\WMIL Supply 2021-22\[WMIL Daily Flows ALL Stations 2021-22.xlsx]Monthly Salt Summary

The chart shows seasonal water usage affecting salt imports for each month; this is in line with normal annual irrigation. For annual trends, see para 2.5 Salinity (b).

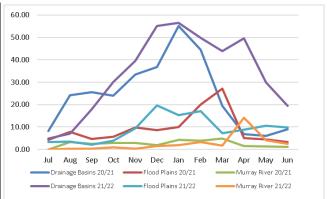
b) Comparable Salinity import data for a year being at least 5 years prior:

Annual	2017/18	2018/19	2019/20	2020/21	2021/22	5 Yr RA
Av. EC	157	99	95	124	142	123
GL	26.5	28.1	24.8	25.1	25.7	26.0
100 Tonnes	26.7	17.8	15.0	19.8	23.4	20.6
ML/T	10.0	15.8	16.5	12.7	11.0	12.7

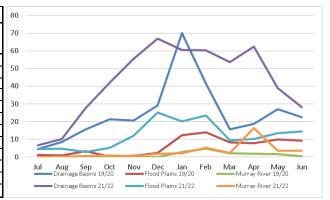
This chart shows the effect of EC on annual salt imports.

(c There are no new targets identified, the salt imports are controlled purely by the salt content of the river and quantity of water extracted. The annual EC average has been calculated by daily salt imported in tonnes /daily water pumped in GL/0.64; this gives a true average EC of 'supplied' water. This is an identified benchmark although we have no control over this.

d) Supply remains in a range of between 24-28GL per year. Average EC and salt imports have increased. The increase in salt load is due to the increase in EC.


Condition 2.5-Discharge

a) Discharges from all drainage outfalls for the 2021/22 year:


	Buronga	ı	С	oomeall	а	Curlwaa				Total	
т	otal Drainage	e	т	otal Drainage	•	Total Drainage			1	Total Draina	ge
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)
48.72	1,086	33.85	495.41	2,086	661.47	1.24	400	0.32	545.37	1190.68	695.65
D	rainage Basiı	ns	Drainage Basins Drainage Basins Drainage			rainage Bas	inage Basins				
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)
48.72	1,086	33.85	354.77	2,110	479.09	0.00	NA	0.00	403.48	1597.92	512.94
	Flood Plains	1		Flood Plains			Flood Plains			Flood Plair	ıs
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)
0.00	NA	0.00	110.66	2,057	145.64	0.00	NA	0.00	110.66	2056.52	145.64
	Murray River			Murray River		Murray River			Murray Rive	er	
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)
0.00	NA	0.00	29.99	1,914	36.74	1.24	400	0.32	31.23	1157.23	37.06

O:\Supply\WM IL Supply Figures\WM IL Supply 2021-22\[2021-22 Weather Data.xls]BOM Rainfall

Drai	Drainage water (ML) - Comparable data for last 2 years										
	Drainage Basins 20/21	Flood Plains 20/21	Murray River 20/21	Drainage Basins 21/22	Flood Plains 21/22	Murray River 21/22					
Jul	8.22	4.37	0.00	4.77	3.33	0.00					
Aug	24.27	7.88	3.31	6.98	3.55	0.24					
Sep	25.58	4.77	2.50	17.82	2.07	0.37					
Oct	24.08	5.59	2.90	30.03	3.83	0.83					
Nov	33.48	9.86	2.92	39.65	9.36	0.37					
Dec	36.78	8.54	1.96	55.09	19.65	1.57					
Jan	55.19	9.96	4.23	56.46	15.23	1.83					
Feb	44.60	20.00	3.91	49.85	17.14	3.38					
Mar	19.36	27.21	4.84	43.91	7.17	1.79					
Apr	6.79	5.02	1.61	49.58	8.83	14.21					
May	6.00	4.47	1.35	29.85	10.64	4.10					
Jun	8.92	3.32	1.04	19.47	9.84	2.52					

	Salt Exp	oorts (T) -	Compara	ble data for	last 2 years	
	Drainage	Flood	Murray	Drainage	Flood	Murray
	Basins 20/21	Plains 20/21	River 20/21	Basins 21/22	Plains 21/22	River 21/22
Jul	9.21	5.18	0.00	6.70	4.47	0.00
Aug	34.43	9.39	3.41	10.27	4.74	0.29
Sep	34.77	5.95	3.04	27.77	2.78	0.47
Oct	31.98	6.75	3.41	41.96	5.09	0.83
Nov	41.76	11.77	3.31	55.50	12.00	0.36
Dec	44.49	10.35	2.11	66.82	25.18	1.86
Jan	70.48	12.37	5.58	60.59	20.05	2.08
Feb	64.25	27.15	5.63	60.24	23.55	5.16
Mar	29.84	42.60	7.28	53.53	9.49	2.38
Apr	7.94	6.60	1.99	62.47	10.27	16.44
May	8.05	5.82	1.63	38.84	13.58	3.61
Jun	12.37	4.55	1.17	28.26	14.43	3.59

b) Comparable discharge data for a year being at least 5 years prior:

Draina	ge Water ((ML) over	7 years	450.00
	Drainage	Flood	Murray	400.00
	Basins	Plains	River	350.00
2015/16	227.98	47.84	6.33	250.00
2016/17	285.71	62.57	3.30	200.00
2017/18	352.41	58.93	17.57	150.00
2018/19	221.99	46.33	1.81	50.00
2019/20	268.59	63.23	13.27	0.00
2020/21	293.28	111.00	30.56	2015/16 2016/17 2017/18 2018/19 2019/20 2020/21 2021/22
2021/22	403.48	110.66	31.23	Drainage Basins Flood Plains Murray River

Sal	t Exports (Γ) over 7 <u>:</u>	years	600.00
	Drainage	Flood	Murray	500.00
	Basins	Plains	River	
2015/16	253.18	48.67	6.07	400.00
2016/17	366.50	59.24	3.87	300.00
2017/18	422.96	58.38	7.88	200.00
2018/19	277.27	46.96	2.09	100.00
2019/20	295.00	70.44	14.42	
2020/21	389.58	148.48	38.56	0.00
2021/22	512.94	145.64	37.06	Drainage Basins Flood Plains Murray River

c) The majority of the drainage water trend follows the irrigation demand and to a lesser degree rainfall events. 2021/22 irrigation supply was 98.65% of the 5-year average; Rainfall was 358.0mm, above the 50-year average of 284.6mm considerably more than the last 4 years; there was an increase in drainage water, possibly in line with the increase in rainfall. September 2019 WMI introduced pulsed hydrogen peroxide dosing, currently at 4 hours a day at 5ppm at all our extraction sites, this is increased up to 24/7 depending on river water quality and demand; This is to control bryozoan growths in the pipeline, aimed at improved water quality at customer outlets; Customers have generally noticed their onfarm filters have been running for longer between backflushes, this has reduced the quantity of backflush water returned to the surface drain system; although when river water quality is bad, peroxide dosing cannot dissolve organic matter in the pipeline.

d) Salt exported follows a similar pattern to drainage water throughout the year; Long term change from dominant furrow irrigation in 1997 to dominant drip irrigation in 2022 has reduced drainage water from 4848ML in 1998/99 to 545ML in 2021/22; exported salt in 1998/99 was 6538 tonnes, while 2021/22 was 696 tonnes. If this is compared against salt imports, it appears the imported salt is now being retained on irrigated land; sustained rainfall may control the salinity to some extent.

- Individual salinity and salt load of schedule 1 extraction sites is continued at condition 2.14.
- Individual salinity and salt loads of attachment 1 discharge sites is found at condition 2.15
- A simple salt balance report is found at condition 2.16

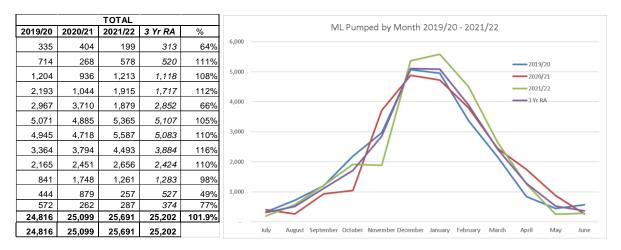
Condition 2.5-Groundwater

The Curlwaa salt interception scheme tubewell pumps have been mostly turned off for the 2021/22 irrigation season, with maintenance runs only. With low ground water the pumps run dry as the ground water flow cannot keep up with the pump output. The low ground water has not warranted the continued operation and the expense of running these pumps. Following advice from 'Department of Natural Resources' in 2009, pumping may be suspended when groundwater falls to 0.5m above river level. Pumping will recommence when ground water levels rise to 1 metre above pool level (currently 31.80 m AHD). Tubewell #1 (Knipes) is now back on-line.

Recommendations for SIS Operations

The review of the operational and monitoring data indicates that the Curlwaa SIS does not need to operate under current conditions and there is currently no need to refurbish tubewell 1. However, groundwater monitoring data should continue to be collected annually and reviewed against trigger levels to provide a safeguard if groundwater levels begin to rise. Groundwater levels should be reviewed in the context of rainfall and river level data as hydrograph analysis shows that the floodplain aquifer responds to flood and rainfall events which may result in rises in groundwater levels that are only short term. Irrigation supply and method data should also be reviewed with groundwater trends. Previous communications with Department of Natural Resources by WMI have suggested a trigger level of 31.8mAHD (i.e., 1m above pool level) as a trigger to reinstate SIS operation. This trigger level is considered reasonable however it is also proposed that if groundwater levels rise to 31.3 MAHD (0.5m above pool level) this should trigger a review of SIS operations and the development of a plan to reinstate pumping. This is to prevent a significant time lag for reinstating groundwater pumping if the 31.8mAHD level is reached.

Western Murray Irrigation | 30 October 2020

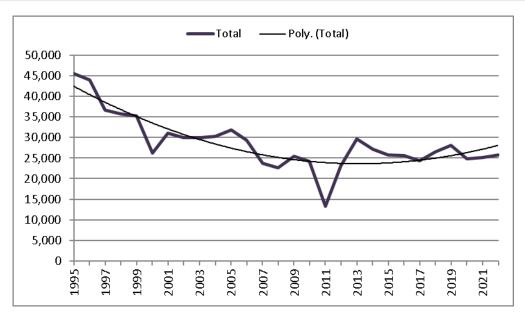

Groundwater Monitoring and Salt Interception Scheme Review Page 4

The water table has remained low for the past year, as expected during a dry season. Drip is now the dominant irrigation method; this retains water around the plantings' root ball, which does not tend to recharge the water table to the same extent.

Full details of groundwater at Condition 2.17.

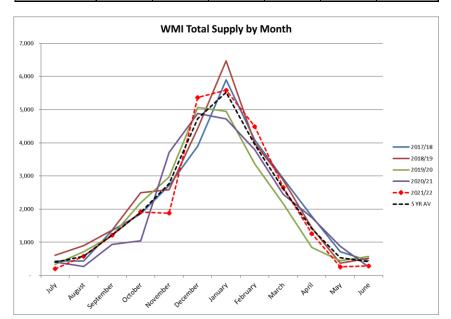
Condition 2.5-Extraction

a) Comparable extraction data (ML) for at least 2 previous years (3 years):



2021/22 extraction (ML) was 2% above the 3-year average, another unremarkable year.

b) Comparable extraction data for a year being at least five years (27 years):


Long-term annual extraction

Jun-30	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Buronga	3,387	3,585	3,496	3,277	2,925	2,505	2,879	3,245	3,494	3,385	3,466	3,053	2,472	2,285	3,006	3,223	1,822	3,273	4,033	3,289	2,816	2,906	2,892	3,248	3,542	2,338	2,578	2,597
Coomealla	34,661	33,385	25,987	25,238	25,537	18,199	21,831	20,509	21,218	21,031	21,930	20,502	16,640	16,199	17,877	16,733	9,108	15,943	20,478	19,319	18,596	18,376	17,751	19,266	20,584	18,871	19,269	19,496
Curlwaa	7,413	6,953	7,145	7,245	6,798	5,509	6,314	6,139	5,309	5,804	6,373	5,750	4,676	4,134	4,525	4,323	2,380	3,909	5,132	4,534	4,352	4,353	3,660	4,027	3,943	3,607	3,252	3,597
Total	45,461	43,923	36,628	35,760	35,260	26,213	31,024	29,893	30,021	30,220	31,769	29,305	23,788	22,618	25,408	24,279	13,310	23,125	29,643	27,142	25,764	25,635	24,303	26,541	28,069	24,816	25,099	25,691

Monthly extraction over the past 5 years:

		Total WMI Diversions										
Month	2017/18	2018/19	2019/20	2020/21	2021/22	5 YR AV						
July	431	612	335	404	199	396						
August	437	904	714	268	578	580						
September	1,356	1,366	1,204	936	1,213	1,215						
October	1,861	2,498	2,193	1,044	1,915	1,902						
November	2,719	2,583	2,967	3,710	1,879	2,772						
December	3,896	4,435	5,071	4,885	5,365	4,731						
January	5,896	6,472	4,945	4,718	5,587	5,524						
February	4,082	3,995	3,364	3,794	4,493	3,946						
March	2,924	2,881	2,165	2,451	2,656	2,615						
April	1,783	1,437	841	1,748	1,261	1,414						
May	714	371	444	879	257	533						
June	442	514	572	262	287	415						
Year to Date	26,541	28,067	24,816	25,099	25,691	26,043						
Total	26,541	28,067	24,816	25,099	25,691	26,043						

c) Long-term extraction shows a marked reduction in water usage; utilisation of irrigation area is presently at 79%, 1997 this was 98%; Irrigable area has increased by 9% from 1997. Water savings have largely been achieved by a change from dominant furrow irrigation in 1997 to dominant drip irrigation in 2021:

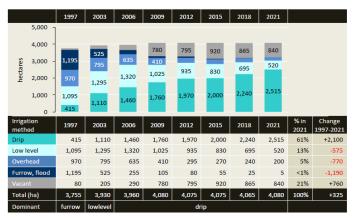


Figure 5: Western Murray Irrigation - irrigation methods from 1997 to 2021

(2021 WMI Crop Report, p15)

d) Long-term climate tends to go through long periods of drought followed by heavy rainfall. 2021/22 was above average annual rainfall 358.0mm (284.6mm 50-year average), with a 'relatively' even distribution throughout the year:

Season	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Total
2021/22	32.2	11.8	14.8	15.2	56.6	1.6	86.2	6.0	14.8	49.0	52.8	17.0	358.0

Rainfall mm (Original data from B.O.M. - Mildura Airport)

Condition 2.5-Water Use

- a) 2021/22 WMI extracted 25,691ML for water use (see 2.5 Extraction a), this report), this was used predominantly for horticulture with a small amount of this allocated for General Security (79ML) and Domestic and Stock use (560ML).
- b) WMI crops are planned to be surveyed every three years, (COVID19 delayed the 2021 report, by one year):

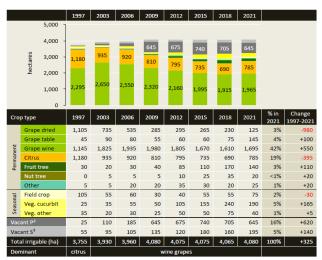


Figure 2: Western Murray Irrigation - crop types from 1997 to 2021

It has been noticed the horticulture business is gaining some momentum within WMI. Short term trends indicate more irrigable land is being put back into production; this will also increase water usage which will challenge our infrastructure in its current configuration.

c) We are pumping less water annually than 1997, but drip irrigation puts excessive intra-day pressure on our infrastructure (designed around furrow irrigation); days above 40C create very high peaks of demand from drip

Vacant P: not irrigated but previously an irrigated permanent planting
 Vacant S: not irrigated but previously an irrigated seasonal crop

irrigation systems, targeted pipeline upgrades are necessary to alleviate the intra-day demand, the first upgrade is due for completion in spring 2022 to alleviate two bottlenecks in our system.

Coomealla relift pump station emphasises demand at peak season. Three rain events can be clearly seen effecting demand in November, January and February. When Coomealla relift pump station is above 450L/s, customer pressure drops below service level.

Condition 2.6

The following have been identified as possible data omissions and discrepancies with an explanation of action undertaken/proposed to remedy the monitoring and reporting deficiency.

a) Several destroyed piezometers have not been replaced; however, consideration is being given to which piezometers are required to achieve the appropriate reporting coverage with consultation with a groundwater hydrogeologist. Rehabilitation of several piezometers has been attempted in 2017/18; we will know if they are functional if the ground water rises to a measurable level. Piezometers have been checked for GPS location and updated; several were found incorrect. As built screen depths have been updated from historical files, See condition 2.17. At the time of writing this report 23Oct22, there is now sufficient rain and high river activity to raise the ground water, the previously 'dry' piezometers will be remeasured, to assure they are operational (likely) rather than having blocked screens.

Condition 2.7

All files including the Compliance Report and all associated Excel spread sheets have been provided, as a record of monitoring and testing data for discharged water salinity and volume and groundwater conditions. These are provided in an unrestricted access, electronic format.

Condition 2.8

"Salinity Training Manual"; Published by NSW Department of Primary Industries, June 2014 is used as a reference for understanding the effects of salination and methods for monitoring and control. Quality assurance is achieved by annual calibration of our extraction meters for extraction volume. MDBA website is used for salinity readings from Wentworth weir. Volume of exports is measured by V-notch or electronically; Salinity is measured with a salinity meter which is calibrated before every use with a test solution. These measurements are increased during flood/rain events. As part of EPA reporting, at least once a year (depending on drainage flow) drainage water samples are sent to consultants 'Pinion Advisory-Mildura' for NATA approved laboratory testing for chemical content (at NMI, 105 Delhi Road, North Ryde, NSW 2113). Piezometers are measured in accordance with the works approval. Training is also carried out, so at least 3 staff are familiar with the current monitoring procedures. Consultants are used for advice when required.

New Measures to Limit Groundwater Recharge and Discharge of Salt

Condition 2.9

A continuing trend towards drip irrigation requires much finer filtration, this requires more frequent operation of filter backflush systems; Hydrogen peroxide treatment was introduced in 2019/20 to stop the growth of pipeline bryozoans and other organic growths, it has reduced backflush water at the on-farm filtration systems, and reduced flows into the surface drainage system, thereby reducing groundwater recharge and discharge of salt.

The water table has been below trigger-level for several years, minimising discharge of salt into the Murray River system. At the time of writing this report 23Oct2022, river level has hit the trigger level, tubewell pumps are now operating to maintain a positive flow of salt away from the river, water is discharged into Fletchers Lake, via Fletchers Creek.

Reporting on Water Management

Condition 2.10

In respect of each water supply work listed in schedule one (of the Monitoring and Reporting Plan for Combined Approval 60CA581273) the reconciled monthly water volumes in megalitres are as follows:

a) Extracted under water access licences held by the approval holder. Domestic+Stock, General Security and High Security are <u>not</u> metered separately. There is a 2.7ML totalised discrepancy between Water NSW statements and WMI reported figures.

IWAS Statement										
Type WAL ML										
HS	60AL581271	25,080.9								
DS	60AL581272	490.0								
DS	60AL682421	34.0								
DS	60AL583565	36.0								
GS	60AL583086	47.4								
	Total	25,688.3								

WMI - Reconciled Usage for each Authorised supply works

								J				F - /						
		BURONGA				COOMEALLA				CURLWAA								
														TOTAL				
Month	2019/20	2020/21	2021/22	3 Yr RA	2019/20	2020/21	2021/22	3 Yr RA	2019/20	2020/21	2021/22	3 Yr RA	2019/20	2020/21	2021/22	3 Yr RA	%	
July	16	43	30	30	224	287	127	213	95	74	41	70	335	404	199	313	64%	
August	63	26	58	49	500	197	413	370	151	45	107	101	714	268	578	520	111%	
September	103	109	136	116	879	652	863	798	222	175	214	204	1,204	936	1,213	1,118	108%	
October	232	133	215	193	1,611	757	1,410	1,259	350	154	290	265	2,193	1,044	1,915	1,717	112%	
November	272	374	185	277	2,276	2,890	1,422	2,196	419	446	272	379	2,967	3,710	1,879	2,852	66%	
December	413	482	480	458	4,031	3,837	4,190	4,019	627	566	696	630	5,071	4,885	5,365	5,107	105%	
January	433	427	552	471	3,904	3,752	4,330	3,995	608	538	705	617	4,945	4,718	5,587	5,083	110%	
February	348	370	416	378	2,522	2,973	3,503	3,000	494	451	574	506	3,364	3,794	4,493	3,884	116%	
March	263	288	293	281	1,563	1,788	1,935	1,762	339	375	428	381	2,165	2,451	2,656	2,424	110%	
April	86	209	153	149	625	1,290	913	943	130	249	195	191	841	1,748	1,261	1,283	98%	
May	56	85	41	61	314	649	182	381	74	145	35	85	444	879	257	527	49%	
June	53	32	38	41	422	196	209	275	97	34	40	57	572	262	287	374	77%	
Year to Date	2,338	2,578	2,597	2,504	18,871	19,269	19,496	19,212	3,607	3,252	3,597	3,485	24,816	25,099	25,691	25,202	101.9%	
Total	2,338	2,578	2,597	2,504	18,871	19,269	19,496	19,212	3,607	3,252	3,597	3,485	24,816	25,099	25,691	25,202	· · · · · · · · · · · · · · · · · · ·	

- b) No other water access licences were used for extraction.
- c) No water was extracted for environmental or river operational purposes.
- d) All water is delivered to customers except for leakage and scouring; leakage is so minute it is not measurable with any confidence, scouring used 19.83ML.

Condition 2.11

Water discharged from (drainage) sites listed in Attachment 1:

This "Drainage" water is a combination of:

- Groundwater from the deep drainage system, this drains the farms of excessive water from irrigation and rain events, these drains were very active when furrow irrigation was dominant.
- Surface water from the surface drain system, from backflush, deep drains discharge and rain events.
- a) Discharged without credit:
 - 514.14 ML was retained in area of operations i.e., drainage basins and flood plains, not to the river.
 - 31.23 ML was discharged to Murray River.
- b) Nil discharges for environmental or river operational purposes.

Condition 2.12

- a) Discharged without credit (not including rain or evapo-transpiration rates).
 - Buronga 2,597ML water extracted from river, 0.108ML scoured to drains, 48.72ML drained to basins.
 - Coomealla 19,496ML water extracted from river, 19.5565ML scoured to drains, 465.42ML drained to basins and flood plains, 29.99ML drained to river.
 - Curlwaa 3,597ML extracted from river, 0.1635ML scoured to drains, 1.24ML discharged to river.

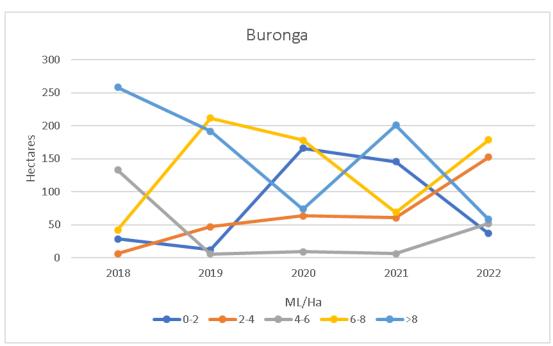
- b) Negligible losses in fully pipelined network <10ML (0.05%).
- c) No change to offline storages (balance towers) they are a fixed size metal cylinder, kept at a constant height to maintain pressure on the pipelined systems, i.e., part of the pipelined system. Coomealla tower (1995) is approximate 2ML(0.01% of annual use), Curlwaa tower (1986) is approximately 0.6ML(0.017% of annual use), they have been at the same level (except maintenance) since construction.

Condition 2.13

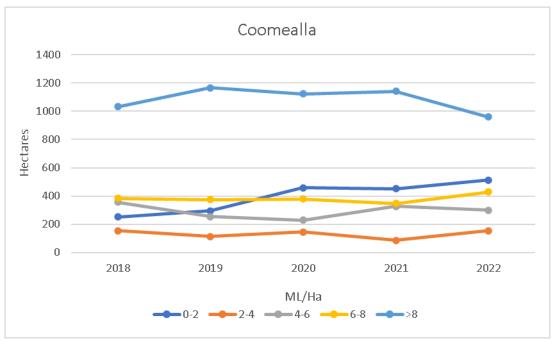
The estimated annual values in measurement units requested for:

- a) Rainfall = 358mm
- b) Evapo-transpiration = 1693mm
- c) Water deliveries for horticulture = 22,587L
- d) Water deliveries for summer crops = 2545ML
- e) Water deliveries for winter crops = 20ML

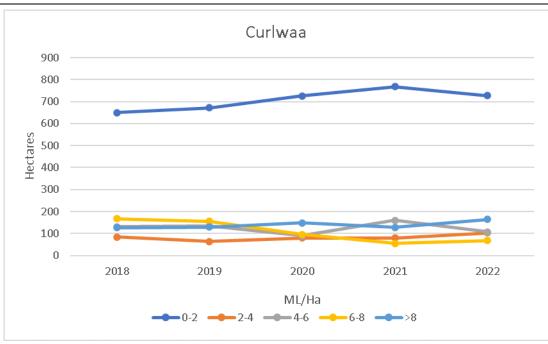
Table 2: Western Murray Irrigation - irrigated crops in 2021


Crop type		2021 (ha) 2021 %		Description					
	Grape dried	125	3%						
	Grape table	145	4%						
+	Grape wine	1,695	42%						
Permanent	Citrus	785	19%	Mainly navel varieties. Other citrus includes; blood orange, grapefruit, lemon, lime, mandarin, common orange, pomelo, tangelo and Valencia.					
Per	Fruit tree	140	3%	Mainly avocado, fig and stone fruit. Also, date palm, jujube, olive and pomegranate.					
	Nut tree	20	<1%	Almonds					
	Other	25	1%	Mainly nurseries. Other includes; berries, fresh flowers, native plants and tree plantations.					
_	Field crop	75	2%	Mainly pasture and fodder crops.					
Seasonal	Veg. cucurbit	190	5%	Mainly melons. Other cucurbits include pumpkin and zucchini.					
Se	Veg. other	40	1%	Mainly asparagus. Other vegetables included; beans, chilli, eggplant, peas, sweet corn and tomato.					
Tota	al irrigated (ha)	3,240	79%						
Vacant	Vacant P	645	16%	Vacant (not irrigated), previously an irrigated permanent crop					
Vac	Vacant S	195	5%	Vacant (not irrigated), previously an irrigated seasonal crop					
Tota	Total irrigable (ha)		100%						

WMI Crop Report 2021, p.10


- f) Water deliveries for Domestic and Stock = 560ML.
- g) Application areas for the water uses c) to f) estimated from locally relevant crop water use factors = 3,240ha.

h) The distribution of irrigation intensity (ML/ha/year) in at least three intensity ranges for the main supply sub-division areas.


Five intensity ranges total Ha of ML/Ha over a period of 5 years for each irrigation area; the lower ranges will have been unstable over the COVID19 period, mainly due to lack of pickers, there were decisions made to not to plant seasonal crops at all in some areas, also if there is no market for grapes, the growers will cut back on the water to minimal requirements to only keep the vines alive:

Buronga looks complex, this is due to a lot of replanting, the addition of small acreage house blocks in 2020, one large irrigator taking supply from another water source and Buronga being a small system.

Coomealla has also had a lot of replanting and redevelopment of previously dry blocks, we expect to see the >8ML/Ha range to increase in hectarage as the new crops increase their demand for water.

Small increase in large previously dry blocks, but more smaller blocks going dry each year. Curlwaa soil has a high clay content and tends to retain water more than Coomealla and Buronga.

Reporting on Salinity and Saltload

Condition 2.14

The salinity and saltload of extractions at the sites listed in schedule 1, and in accordance with requirements set out in schedule 1:

- Flow ML/Month
- Salt Loads Tonnes/Month
- Salinity micro-Siemens/cm
- In table format

	BURON	GA W01	COOME	LLA W02	CURLW	AA W03	Average
Month	ML	Salt (T)	ML	Salt (T)	ML	Salt (T)	EC
July	30	2	127	9	41	3	110
August	58	4	413	30	107	8	114
September	136	10	863	66	214	16	119
October	215	17	1,410	112	290	23	124
November	185	15	1,422	107	272	21	119
December	480	40	4,190	350	696	58	130
January	552	58	4,330	452	705	74	163
February	416	45	3,503	355	574	55	158
March	293	30	1,935	195	428	43	158
April	153	13	913	75	195	16	129
May	41	3	182	15	35	3	128
June	38	3	209	16	40	3	120
Year to Date	2,597	240	19,496	1,782	3,597	323	143

All Areas		2021/22	
	ML	Salt (T)	AV EC
Year to Date	25,691	2,345	143

Condition 2.15

The salinity and salt loads of discharges at the sites listed in Attachment 1, and in accordance with the requirements set out in Attachment 1:

- Volume ML/Month
- Salt Load Tonnes/Month
- Monthly min, max, average
- Table format

District Work/Site Identifie	r	Curlwaa CW 6										on Details es (WGS84)		Type Dimensions		Centrifuga 80mm & 2	200mm	
Name Representing disc	harge	James' Hig Discharge		ers Lake/1	uckers Cre	eek					586760	E 6225910	N	Capacity		X- Section 13 ML/D	= 0.04m	
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site '	Visits
Volume (ML)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	0.0	1.2	0.0	0.0 ML	1.2	0.0	0.1	Flow	No Flow
Salt Load (T)	0.0	0.0	0.0	0.0	0.0	0.0	Salt	0.0	0.0	0.0	0.3	0.0	0.4 T	0.3	0.0	0.0	FIOW	NO FIOW
Average EC	NA	NA	NA	NA	NA	NA	EC Av.	NA	NA	NA	400	0		400	0	NA	2	50

District Work/Site Identifie	Buronga B1											n Details s (WGS84)		Type Dimensions		Weir - 90° 300mm P		
Name Representing disc	Corbett Av		No.1							6099	902E	6219	514N	Capacity		X- Section 2 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.0	0.0	0.4	2.08	4.0	5.1	4.78	6.6	6.508	5.5	8.8	4.9	48.7 ML	8.8	0.0	4.1	Flow	No Flow
Salt Load (T)	0.0	0.0	0.3	1.56	2.6	3.5	3.82	4.2	4.345	3.5	6.2	3.8	33.9 T	6.2	0.0	2.8	FIOW	INO PIOW
Average EC	946	910	1,274	1,171	1,004	1,065	1,250	995	1,043	984	1,107	1,223		1,274	910	1,086	52	0

District		Coomeall	а								Locatio	n Details		Type		Weir - 60°	V Notch	
Work/Site Iden	tifier	CM 5								C	Coordinate	es (WGS	34)	Dimensio	ns	600mm Pi	ре	
Name		Hollands	Lake Mai	in Deep D	rain											X- Section	= 1.13m	2
Representing d	ischarge	Discharge	e to Holla	nds Lake						6032	200E	6228	8800N	Capacity		8 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site '	Visits
Volume (ML)	1.4	0.9	3.1	7.8	12.1	31.6	32.0	31.0	24.8	24.3	11.4	10.6	191.0 ML	32.0	0.9	15.9	Flow	No Flow
Salt Load (T)	2.0	1.3	4.6	9.9	17.6	43.7	38.3	43.0	34.3	32.5	17.0	18.4	262.7 T	43.7	1.3	21.9	FIOW	NO FIOW
Average EC	2,186	2,362	2,297	1,978	2,275	2,164	1,871	2,168	2,161	2,090	2,321	2,729		2,729	1,871	2,149	52	0

District		Coomealla									Location	n Details		Type	Weir - 90°	V Notch		
Work/Site Iden	tifier	CM 1									Coordinate	s (WGS84)		Dimension	600mm Pip	e		
Name Representing d	lischarge	Risbey's O Discharge			Deep Drain					5940	980E	6226	900N	Capacity	X- Section 8 ML/D	= 1.13m ²		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 ML	0.0	0.0	0.0	Flow	No Flow
Salt Load (T)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 T	0.0	0.0	0.0	FIOW	INO FIOW
Average EC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		0	0	NA	0	52

District Work/Site Iden	tifier	Coomealla CM 2	ì								Location Coordinate	n Details s (WGS84		Type Dimension	ns	Weir - 90° 600mm P		
Name Representing of	lischarge	Risbey's C Discharge			nel No.1 M	ain Deep D	Orain			5940	080E	6226	900N	Capacity		X- Section 8 ML/D	= 1.13m ²	
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 ML	0.0	0.0	0.0	Flow	No Flow
Salt Load (T)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 T	0.0	0.0	0.0	FIOW	INO FIOW
Average EC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		0	0	NA	0	52

District		Coomealla	a								Location	n Details		Туре	Bank & Pi	•		
Work/Site Identifie	r	CM 7									Coordinate	s (WGS84)		Dimensions	150mm Pi	ре		
Name		Water's D	eep Drain												X- Section	$= 0.07 \text{m}^2$		
Representing disc	harge	Discharge	s to Murra	y River						5958	325E	6226	100N	Capacity	0.5 ML/D			
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.4	0.0	0.9 ML	0.5	0.0	0.1	Flow	No Flow
Salt Load (T)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.1	0.0	0.3 T	0.2	0.0	0.0	FIOW	INO FIOW
Average EC	NA	NA	NA	NA	NA	NA	NA	NA	NA	600	300	NA		600	300	467	2	50

District		Coomealla									Location	n Details		Туре		Bank & Pip	ре	
Work/Site Identifier		CM 21									Coordinate	s (WGS84)		Dimensions		150mm Pip	oe	
Name		Old Jetty														X- Section	$= 0.07 \text{m}^2$	
Representing discharge		Discharges	to Murray	River						5962	298E	6225	511N	Capacity		0.5 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.0	0.2	0.4	0.8	0.4	1.6	1.8	3.4	1.8	13.7	2.5	2.5	0.0 ML	13.7	0.0	2.4	Flow	No Flow
Salt Load (T)	0.0	0.3	0.5	0.8	0.4	1.9	2.1	5.2	2.4	16.2	3.2	3.6	0.0 T	16.2	0.0	3.0	FIOW	INO FIOW
Average FC	NA	1.900	1.954	1.554	1.485	1.861	1.772	2.382	2.076	1.851	2.040	2.228		2.382	1.485	NA	37	15

District		Coomealla									Locatio	n Details		Туре		Bank & Pi	•	
Work/Site Identifie	r	CM 12&13	3								Coordinate	s (WGS84)		Dimensions		150mm Pi	pe	
Name		Deep Drai	n 342-398 '	WMIL Dep	ot											X- Section	$= 0.07 \text{m}^2$	
Representing disc	harge	Discharge	s to Murray	River Floo	od Plain					5961	125E	6225	325N	Capacity		0.5 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.0	0.0	0.4	1.0	1.0	1.6	1.5	3.4	1.6	1.8	2.5	2.5	17.2 ML	3.4	0.0	1.4	Flow	No Flow
Salt Load (T)	0.0	0.0	0.5	1.2	0.9	1.9	1.7	5.2	2.1	1.7	3.2	3.6	21.9 T	5.2	0.0	1.8	FIOW	INO FIOW
Average EC	NA	NA	1,954	1,871	1,432	1,861	1,727	2,382	2,086	1,527	2,040	2,228		2,382	1,432	1,995	36	16

District Work/Site Identifie	ır	Coomealla CM 14	ì									n Details s (WGS84)		Type Dimensions		Bank & Pi 150mm Pi		
Name Representing disc	charge	Wakefield Discharge			od Plain					5972	200E	6224	650N	Capacity		X- Section 0.5 ML/D	$= 0.07 \text{m}^2$	
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site '	Visits
Volume (ML)	1.4	1.3	0.5	1.1	3.5	4.6	3.9	3.2	2.0	2.5	3.3	3.3	30.6 ML	4.6	0.5	2.6	E1	No Elec
Salt Load (T)	1.8	1.6	0.6	1.5	4.7	5.3	4.5	3.6	2.5	3.0	4.0	5.1	38.4 T	5.3	0.6	3.2	Flow	No Flov
Average EC	2.007	2.004	2.136	2.153	2.135	1.805	1.796	1.795	1908	1.851	1.867	2.406		2.406	1.795	1.958	49	3

District		Coomealla	ì								Location	n Details		Туре		Bank & Pi	ре	
Work/Site Identifie	r	CM 15									Coordinate	s (WGS84)		Dimensions		150mm Pi	ре	
Name		Boronia De	eep Drain -	DD365												X- Section	$= 0.07 \text{m}^2$	
Representing disc	harge	Discharge	s to Murray	y River Floo	od Plain					5975	500E	6224	050N	Capacity		0.5 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site '	Visits
Volume (ML)	0.4	0.6	0.2	0.5	1.1	1.4	1.0	1.5	0.4	1.6	1.0	0.8	10.5 ML	1.6	0.2	0.9	Flow	No Flow
Salt Load (T)	0.5	0.8	0.3	0.6	1.3	1.7	0.9	1.7	0.4	1.7	1.1	1.1	12.0 T	1.7	0.3	1.0	FIOW	INO FIOW
Average EC	1,900	1,900	1,900	1,900	1,909	1,900	1,400	1,733	1400.0	1,663	1,759	2,100		2,100	1,400	1,777	27	25

District Work/Site Identifie	Site Identifier CM 17											Type Dimensions	Dimensions 150mm Pipe					
Name Representing disc	harge	3rd Alloca Discharge								5978	350E	6223	350N	Capacity		X- Section 0.5 ML/D	i = 0.07m ²	
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site '	Visits
Volume (ML)	1.5	1.6	1.0	1.2	3.8	12.1	8.8	9.1	3.1	2.9	3.9	3.2	52.3 ML	12.1	0.97	4.4	Flow	No Flow
Salt Load (T)	2.2	2.3	1.4	1.8	5.0	16.3	13.0	13.1	4.5	3.8	5.3	4.6	73.3 T	16.3	1.4	6.1	FIOW	INU I*IOW
Average EC	2,233	2,222	2,200	2,242	2,056	2,108	2,303	2,250	2252.9	2,048	2,131	2,268		2,303	2,048	2,191	51	1

Condition 2.16

A simple annual salt balance representing the imported, exported and retained salt load for the area associated with each separate water supply work:

WMI Supply Imports

	Buronga			Coomealla		Curlwaa			
Ma	n Pumping St	ation	Main	Pumping St	ation	Main	Pumping St	ation	
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	
2,59	7 144	240	19,496	143	1,782	3,597	140	323	

O\DO Files\001Drainage\000 Drainage Figures\Drainage 2021+22\[WM IL Drainage Summary 2021+22- Compliance Report.xls]Area Drainage and Salt Imports

WMI Drainage Outfalls

	Buronga			Coomealla			Curlwaa			Total	
т	otal Drainage	e	Total Drainage			Total Drainage			Total Drainage		
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)
48.72	1,086	33.85	495.41	2,086	661.47	1.24	400	0.32	545.37	1190.68	695.65
D	rainage Basi	ns	D	rainage Basiı	าร	Di	rainage Basii	าร		rainage Ba	sins
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)
48.72	1,086	33.85	354.77	2,110	479.09	0.00	NA	0.00	403.48	1597.92	512.94
	Flood Plains			Flood Plains			Flood Plains			Flood Plair	ıs
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)
0.00	NA	0.00	110.66	2,057	145.64	0.00	NA	0.00	110.66	2056.52	145.64
	Murray River			Murray River			Murray River			Murray Rive	er
ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)	ML	Av. EC	Salt (T)
0.00	NA	0.00	29.99	1,914	36.74	1.24	400	0.32	31.23	1157.23	37.06

O:\DO Files\001Drainage\000 Drainage Figures\Drainage 2021-22\[\WM IL Drainage Summary 2021-22- Compliance Report.xls]Area Drainage and Salt Imports

WMI Salt Balance

Salt (T)	Buronga	Coomealla	Curlwaa	Total
Imported	240.00	1,782.00	323.00	2,345.00
Exported to Drainage Basins	33.85	479.09	0.00	512.94
Exported to Murray Flood Plains	0.00	145.64	0.00	145.64
Exported to Murray River	0.00	36.74	0.32	37.06
Retained on Irrigated Land	206.15	1,120.53	322.68	1,649.35

 $O \land DO \ Files \land 001 \ Drainage \land 000 \ Drainage \ Figures \land Drainage \ 2021 + 22 \land [WM \ IL \ Drainage \ Summary \ 2021 + 22 - Compliance \ Report.xls] A rea \ Drainage \ and \ Salt \ Imports \ A real \ Property \ A real \$

Retained salt T/ha							
	Buronga	Coomealla	Curlwaa				
Irrigated ha	430	2290	515				
Tonnes salt retained	206	1121	323				
Average T/ha	0.48	0.49	0.63				

O\DO Files\001Drainage\000 Drainage Figures\Drainage 2021+22\[WMIL Drainage Summary 2021+22- Compliance Report.xls]Area Drainage and Salt Imports

Reporting Groundwater Requirements

Condition 2.17

The results of monitoring of groundwater conditions by means of piezometers and groundwater control bores (tube-wells) in accordance with the monitoring and reporting requirements set out in Attachment 2.

On advice from NRAR, WMI have had the groundwater monitoring network reviewed by a consultant hydrogeologist 20/21, this report will be sent with the Annual Compliance Report. In accordance with this report the following audit has been started in 2021/22:

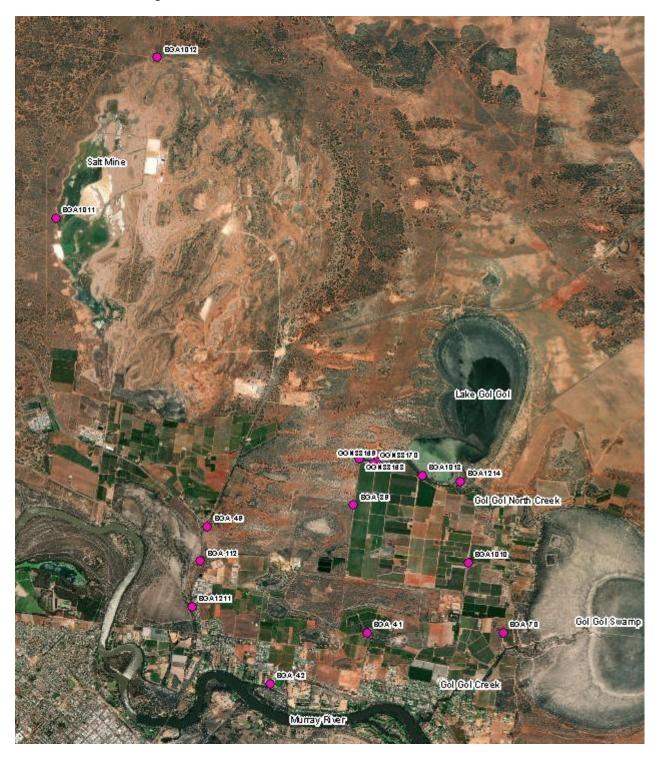
- 100% of WMI controlled Piezometers accounted for. *Complete*.
- GPS location re-established for GDA1994 and GDA2020 Only for GDA1994, we will convert to GDA2020 when hand-held GPS has this function. A two-stage verification is being carried out, desktop utilising GIS and a physical GPS read using a hand-held GPS, a lot of sites are walk-in only.
- AHD, screen depth and overall depth measured and confirmed at each piezometer. No way of physically confirming screen depth, overall depth has been measured. Missing AHD's will be confirmed in 2022-23.
- Assess dry/destroyed piezometers for rehabilitation. *Ideal time in November 2022*, while we have relatively high water table from high river and high rain fall; if the dry piezometers are functioning, they should go to a wet state.
- Liaise with other stakeholders to establish a plan of rectification for the whole piezo network. *This will be started once we have completed auditing our existing piezometers*.

Attachment 2- p.1

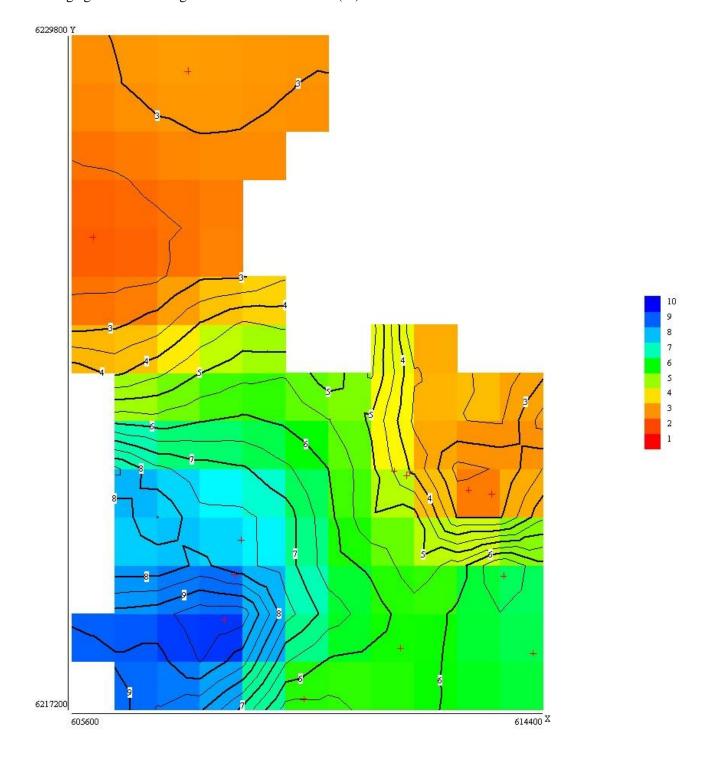
Piezometers are read in accordance with appropriate procedures and standards detailed in: DPI NSW, Salinity Training Manual - 2014, Chapter 13.

Current listing of piezometers by area:

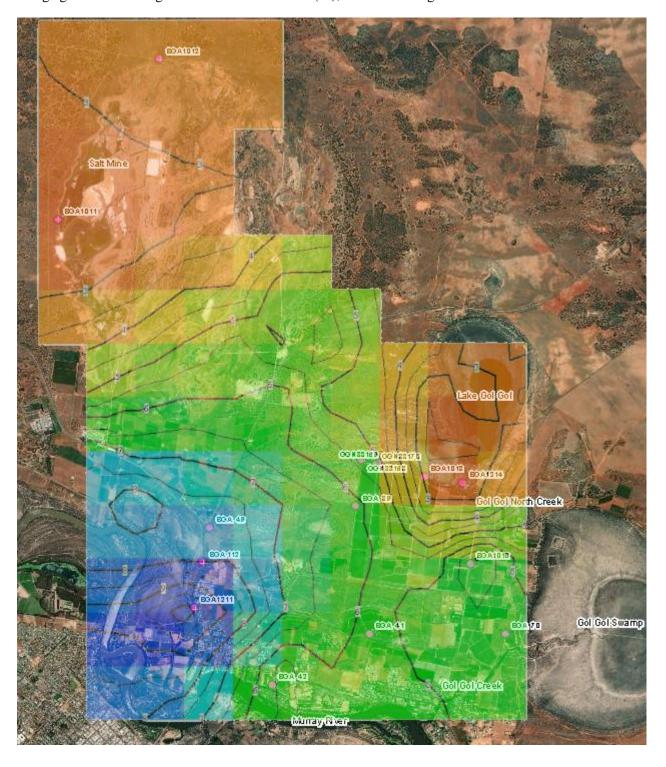
				Buronga			1
Site ID	Use Y/N	Top of Pipe above NS (M)	NS (AHD)	Depth below top of pipe (M)	Easting	Northing	Condition
BGA 39	Υ	0.1	38.77	6.59	611596	6220944	6.81
BGA 41	Υ	0.1	38.65	5.51	611848	6218576	5.77
BGA 42	Υ	0.16	36.84	5.11	610060	6217619	5.35
BGA 49	Υ	0.1	38.54	7.26	608899	6220552	7.64
BGA 70	Υ	0.15	38.64	6.70	614388	6218591	6.16
BGA 94	N	0.03		destroyed			Destroyed @ Aug17
BGA 112	Υ	0.1	38.52	7.67	608758	6219897	7.64
BGA 113	N	0.09		destroyed	608497	6220032	Destroyed @ Aug21
BGA1010	Υ	0.17	38.58	6.73	613727	6219873	7.03
BGA1011	Υ	0.22	33.44	2.67	606063	6226306	2.59
BGA1012	Υ	0.15	33.50	2.20	607952	6229274	3.24
BGA1013	Υ	0.5	33.15	1.70	612890	6221512	1.86
BGA1080	N	0.16	35.40	dry	612169	6218409	Dry
BGA1211	Υ	0.2	Unknown	10.12	608603	6219051	10.31
BGA1214	Υ	0.3	34.41	2.49	613588	6221369	2.69
GGN 88168	Υ	0.55	Unknown	5.28	611721	6221813	5.2
GGN 88169	Υ	0.5	Unknown	3.96	612022	6221746	3.9
GGN 88170	Υ	0.52	Unknown	6.59	611983	6221716	6.19
GGN 88171	N	0.33		destroyed	611794	6219994	Destroyed @Aug19
GGN 88172	N	0.68		destroyed			Destroyed @ Aug17

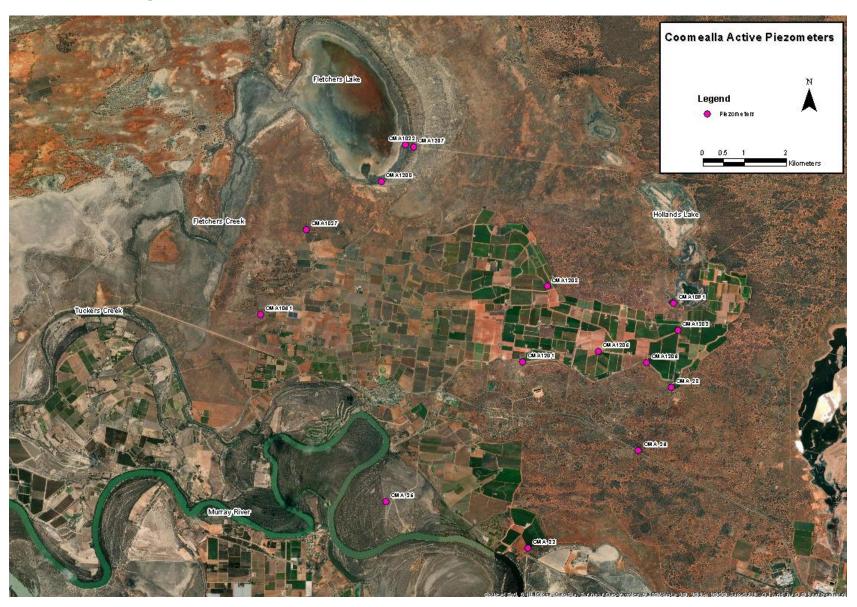

				Coomealla	a		
Site ID	Use Y/N	Top of Pipe above NS (M)	NS (AHD)	Depth below top of pipe (M)	Easting	Northing	Condition
CMA 11	N	0.15	47.15		592915	6229568	
CMA 12	N	0.12	45.92		593009		Destroyed 15Sep19
CMA 13	N	0.34	38.61	-	597023	6223774	
CMA 14	N	0.09	41.81		594653	6230167	
CMA 15	N	0.03	35.28	Destroyed	594817	6228622	Destroyed @15Sep19
CMA 17	N	0.1		Destroyed	597383		Destroyed @15Sep19
CMA 19	N	0.4		Destroyed	597325		Destroyed @ 02Aug17
CMA 22	Υ	0.07	38.34		599617	6223215	
CMA 23	Υ	0.12	51.22		603061	6227033	19.11
CMA 24	N	0.28	35.98	Destroyed	592878	6225203	Destroyed @ 02Aug17
CMA 25	Υ	0.08	35.83	5.82	596229	6224325	5.69
CMA 26	Υ	0.04	54.09	22.24	602272	6225543	22.14
CMA 52	N	0.15	39.25	Dry	595998	6230943	Dry
CMA 53	N	0.07	53.2	Dry	597130	6226011	Dry
CMA 56	N	0.075	57.75	Destroyed	605588	6228670	Destroyed @ 02Aug17
CMA 58	N	0.18	35.58	Dry	603039	6230274	Dry
CMA 60	N	0.15	48.57	Dry	600069	6231438	Dry
CMA 63	N	0.07	47.3	Destroyed	599865	6230483	Dry
CMA 67	N	0.11	48.94	Dry	599199	6232530	Dry
CMA 77	N	0.22	51.07	Dry	601703	6229596	Dry
CMA 78	N	0.16	44.25	Dry	603992	6231885	Dry
CMA 79	N	0.14	40.56	Dry	604117	6230293	Dry
CMA 82	N	0.12	35.59	Dry	592958	6231604	Dry
CMA1019	N	0.2	36.1	Destroyed	601536	6232279	Destroyed @ 15Sep19
CMA1022	Υ	0.36	32.09	2.13	596700	6232852	1.74
CMA1027	Υ	0.33	40.67	10.24	594332	6230809	10.06
CMA1061	Υ	0.36	42.36	12.19	593234	6228788	11.77
CMA1062	N	0.34		Dry	597169	6224019	
CMA1091	Υ	0.3		3.37	603116	6229059	2.93
CMA1092	N	0.25		Dry	602753	6229261	
CMA1094	N	0.4		Dry	602876		Destroyed @ 04Aug17
CMA1110	N			Destroyed	598750		Destroyed @ 04Aug17
CMA1200	Υ	0.26	34.09	4.02	596116	6231978	
CMA1201	Υ	0.28		20.12	599510	6227665	19.74
CMA1202	Υ	0.32		4.67	603217	6228415	
CMA1203	Υ	0.4		6.06	600093	6229461	5.7
CMA1204	N	0.34		Dry	594827	6227186	
CMA1205	Υ	0.4		10.25	601311	6227909	9.85
CMA1206	Υ	0.2		18.78	602469	6227643	18.62
CMA1207	Υ	0.34	37.67	7.81	596891	6232802	7.45

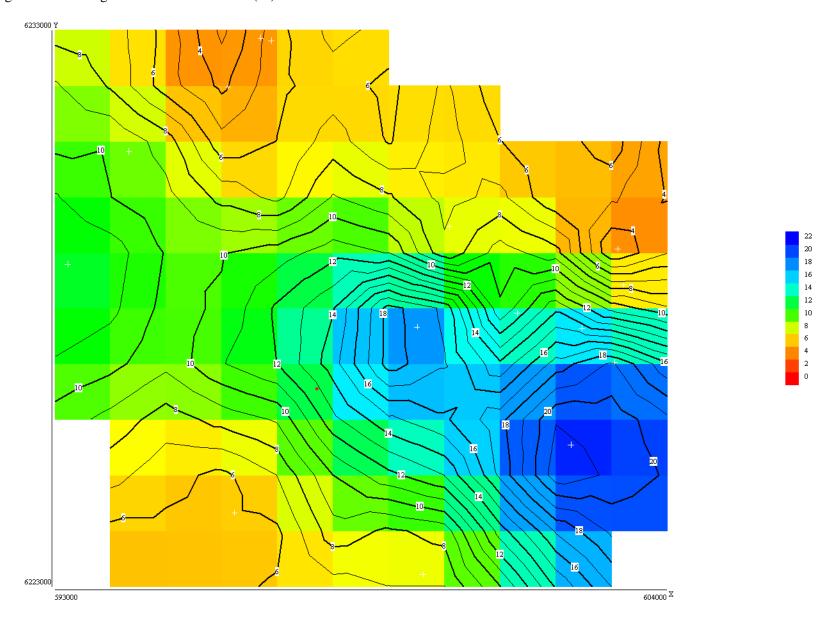
				Curly	vaa		
Site ID	Use Y/N	Top of Pipe above NS (M)	NS (AHD)	Depth below top of pipe (M)	Easting	Northing	Condition
CWA 1/A	Y	0.2	35.89	5.91	590306	6225162	5.71
CWA 5	Y	0.08	33.07	1.54	589227	6225851	1.46
CWA 6	Y	0.21	35.14	6.27	589093	6226126	6.06
CWA 11/A CWA 12	N N	0.2 0.22		Destroyed	588144 590323	6227392	Destroyed @ 10Sep19
CWA 12 CWA 13	N N	0.22	35.4	Destroyed	592990	6225100 6226745	Dry Destroyed @ 09Aug2017
CWA 15	N N	0.03		Destroyed	588485	6225780	Destroyed @ 09Aug2017 Destroyed @ 09Aug2017
CWA 15	Y	0.46	34.36	5.59	589317	6226567	5.13
CWA 19	N .	0.26		Destroyed	590711	6228173	Destroyed @ 09Aug2017
CWA 21/A	N	0.23		Destroyed	587570	6227940	Destroyed @ 10Sep19
CWA 23	Υ	0.25	33.28		591464	6226173	3.70
CWA 25	N	0.4	33.19	Destroyed	591464	6226173	Destroyed @ 09Aug2017
CWA 27	N	0.16	34.36	Destroyed			Destroyed @ 10Sep19
CWA 28	Υ	0.18	34.36	5.25	589766	6227008	5.07
CWA 31	N	0.1		Destroyed	589789	6227013	Destroyed @ 09Aug2017
CWA 41	Y	0.15	36.42	6.76	591913	6225786	6.61
CWA 48	<u>Y</u>	0.14	35.82	6.35	589662	6225583	6.21
CWA 50	Y	0.17	35.52	5.4	590307	6225625	5.23
CWA 51	Y	0.08	35.29	5.4	590221	6225662	5.32
CWA 59	Y	0.06	35.52	6.1	590447	6226179	6.04
CWA 60 CWA 80	Y N	0.26 0.07	35.52 35.12	5.9 Destroyed	590396 587603	6226282 6225578	5.64 Destroyed @ 10Sep19
CWA 80 CWA 81	N N	0.07	35.12	_	587603	6225578	Destroyed @ 10Sep19 Dry
CWA 81	N N	0.08	33.30		588703	6224826	Dry
CWA 82	Y	0.22	33.88	3.51	589012	6224670	3.45
CWA 85	N N	0.09		Destroyed	588427	6223730	Destroyed @ 09Aug2017
CWA 86	Y	0.12	34.83	4.51	589204	6223870	4.39
CWA 87	Y	0.1	34.38	4.01	589214	6222556	3.91
CWA 88	Y	0.09	35.42	4.73	589407	6224552	4.64
CWA 89	Υ	0.02	35.5	5.35	589853	6225001	5.33
CWA 90	Y	0.15	33.8	4.39	588579	6225011	4.24
CWA 91/L	Υ	0.15	33.5	4.37	589078	6225510	4.22
CWA 92	N	0.16		Destroyed	586853	6224310	Destroyed @ 09Aug2017
CWA 93	N	0.11	34.44	,	588584	6228583	Dry
CWA 98	Υ	-0.03	35.96	5.56	592007	6224399	5.59
CWA 99	Y	0.2	36.52	6.59	592308	6224741	6.39
CWA 100	N N	0.7	35.36	_	591369	6225167	DestroyedAug2020
CWA 101	N V	0.15	36.24		592034	6225526	Dry
CWA 102 CWA 103	Y N	0.13 0.08	35.83	6.51 Destroyed	592346 592128	6225958 6226328	6.38 Destroyed 10Sep19
CWA 103 CWA 104	Y	0.08	35.15	6.05	590359	6229019	5.90
CWA 104	N N	0.13	34.34		587455	6226976	Dry
CWA 111	N N	0.06		Destroyed	586780	6224807	Destroyed @ 09Aug2017
CWA 113	N N	0.12		Destroyed	588670	6223255	Destroyed @ 09Aug2017
CWA 115	N	0.15		Destroyed	588740	6223660	Destroyed @ 09Aug2017
CWA 119	N	0.15		Destroyed	589170	6224490	Destroyed @ 09Aug2017
CWA 142	N	0.15		Destroyed	590515	6225565	Destroyed @ 09Aug2017
CWA 150	N	0.21		Destroyed	587130	6225355	Destroyed @ 09Aug2017
CWA 162	N	0.1		Destroyed	591481	6225988	Destroyed @ 10Sep19
CWA 165	N	0.15		Destroyed	590741	6226502	Destroyed @ 09Aug2017
CWA 167	N	0.01		Destroyed	589890	6226582	Destroyed @ 09Aug2017
CWA 173	N	0.15		Destroyed	588375	6226606	Destroyed @ 09Aug2017
CWA 174	N	0.1	34.69		589212	6227061	Destroyed @ 10Sep19
CWA 177	N N	0.02		Destroyed	590424	6227000	Destroyed @ 10Sep19
CWA 178	N N	0.005		Destroyed	590755	6226923	Destroyed @ 10Sep19
CWA 179	N N	0.13	34.81		591121	6226812	Dry
CWA 180 CWA 185	N N	0.12 0.02	35.58 34.21		591185 589248	6227286 6227481	Dry Dry
CWA 185 CWA 187	N N	0.02		Destroyed	589248	6227621	Destroyed 10Sep19
CWA 187 CWA 189	N N	0.005	35.27		589320	6227956	Dry Destroyed 10Sep 19
CWA 109 CWA 195	N N	0.07		Destroyed	589585	6227785	Destroyed 10Sep19
CWA 195	N N	0.09		Destroyed	589725	6228312	Destroyed 10Sep19
CWA 198	N	0.09		Destroyed	589393	6228745	Destroyed 10Sep19
CWA 199	N N	0.09		Destroyed	589863	6228716	Destroyed 10Sep19
CWA1039	N	0.22	34.72	_	591054	6225532	Dry
CWA1041	Y	1.2	34.35	5.13	588734	6226034	3.93
CWA1044	Υ	0.32	34.06	4.22	588055	6223634	3.90
CWA1045	Υ	0.31	35.19		588171	6224401	4.97
CWA1060	Υ	0.24	34.66		591471	6228536	5.13
CWA1083	Υ	0.3	34.63	4.7	589366	6224994	4.40
CWA1084	N	0.2		Destroyed	588942	6224276	Destroyed 10Sep19
CWA1085	Υ	0.18	32.36	5.24	589200	6225855	5.06
CWA1086	Υ	0.32	34.88		591372	6225553	5.04
		0.00	35.88	ا ده د	590627	6225856	6.23
CWA1087 CWA1088	Y N	0.08 0.16		6.31 Destroyed	590321	6227549	Destroyed 10Aug21

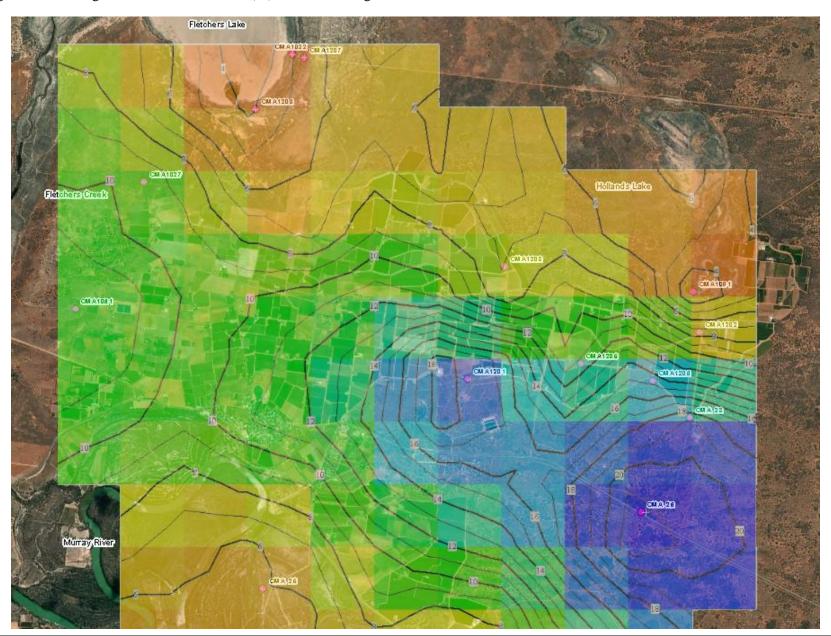

Attachment 2, p.2 - Condition 1

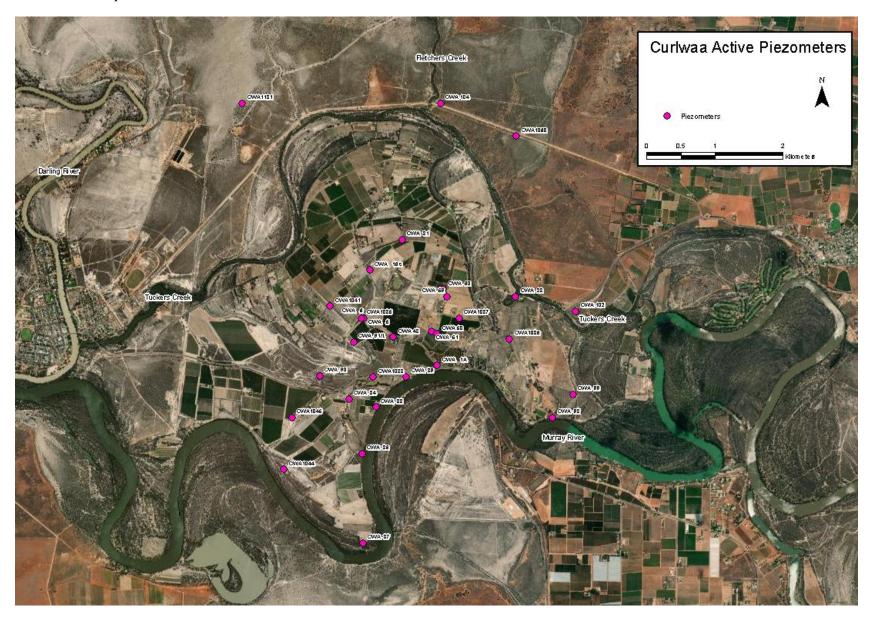
Map of groundwater depth below natural surface @ 2M contour intervals and including first 1M. Dry/destroyed piezometers are not used for constructing contour lines.

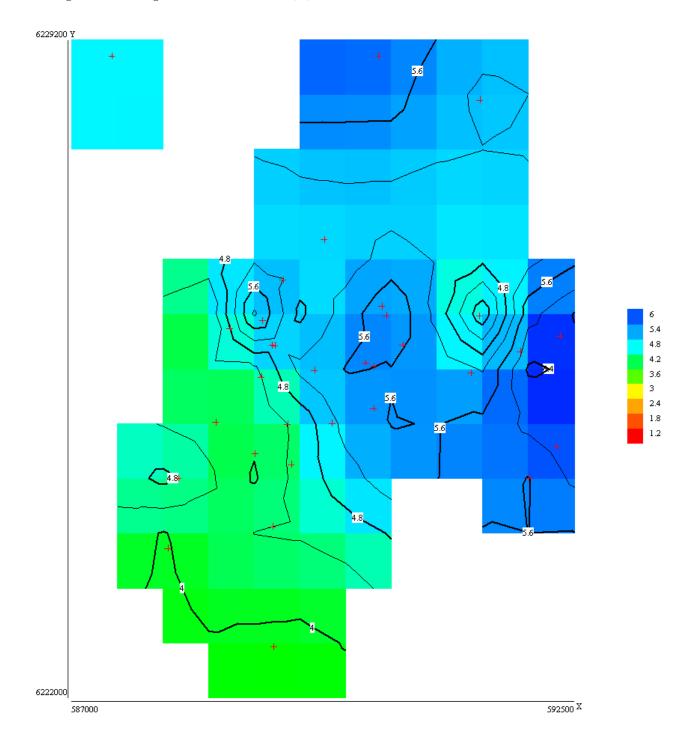

Location of Active Buronga Piezometers:

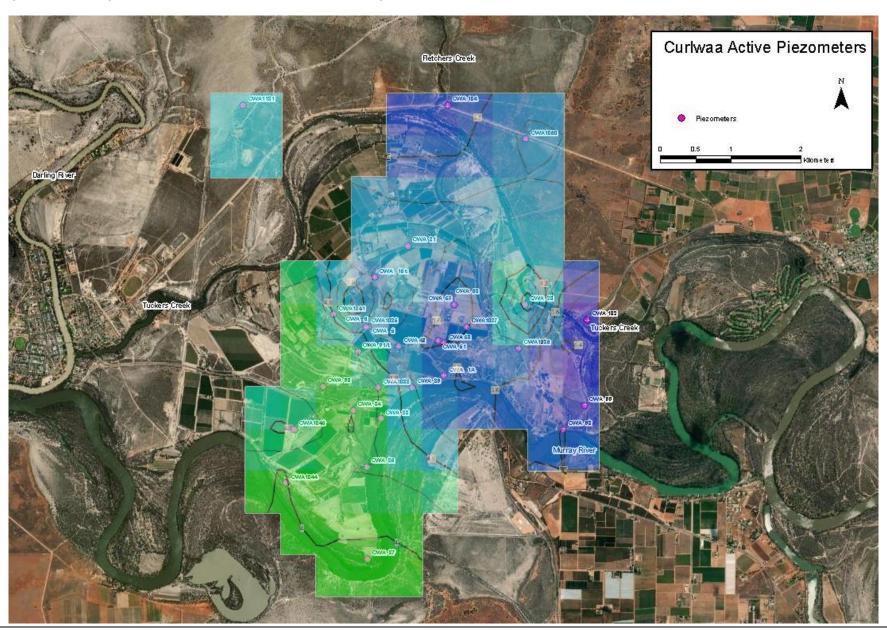

Buronga groundwater heights below natural surface (M)


Buronga groundwater heights below natural surface (M), combined image:


Location of Active Coomealla piezometers:


Coomealla groundwater height below natural surface (M):


Coomealla groundwater heights below natural surface (M), combined image:


Location of Curlwaa active piezometers:

Curlwaa groundwater height below natural surface (M):

Curlwaa groundwater heights below natural surface (M), combined image:

Attachment 2, p.2 - Condition 2.

No consultation with the minister required, where levels have risen above the historical reference.

Contour maps have been provided at condition 1; groundwater levels have remained low for 2021/22. Continuing dry conditions have slowed down groundwater recharge; all piezometers are read in August/September of each year.

Attachment 2, p.2 - Condition 3.

Table of the area (ha) of shallow (<2M), moderate (2-4M) and >4M groundwater depth.

Approximate areas at different depths of groundwater (Ha)							
	<2M	2-4M	>4M	Total mapped area			
Buronga	240	1260	1020	2520			
Coomealla	0	300	9400	9700			
Curlwaa	0	900	1620	2520			

• Evaporation basins form a large part of our area of operations, the figures indicate this as being a large area of high groundwater, whereas it is a low laying drainage/evaporation basin.

Attachment 2, p.2 – Condition 4.

Table of the change in the three depth class areas (ha) within the area of operations, relative to the previous and historical reference years:

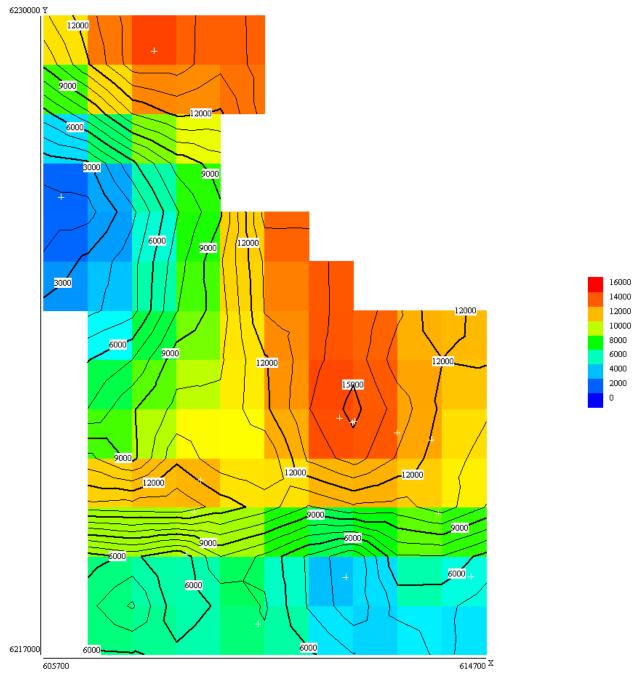
Approximate areas at different heights of groundwater (ha	ı)
---	----

		2021/22		
	<2M	2-4M	>4M	Total op. area
Buronga	0	60	597	657
Coomealla	0	75	4,106	4,181
Curlwaa	0	0	1,641	1,641
	- :	2020/21		
	<2M	2-4M	>4M	Total op. area
Buronga	0	30	627	657
Coomealla	0	0	4,181	4,181
Curlwaa	0	5	1,636	1,641
	- :	2019/20		
	<2M	2-4M	>4M	Total op. area
Buronga	0	35	622.29	657
Coomealla	0	200	3980.74	4,181
Curlwaa	0	90	1551	1,641
		2010/11		
	<2M	2-4M	>4M	Total op. area
Buronga	3.2	13.75	640.34	657
Coomealla	473.55	204.28	3502.91	4,181
Curlwaa	0	54.91	1586.09	1,641

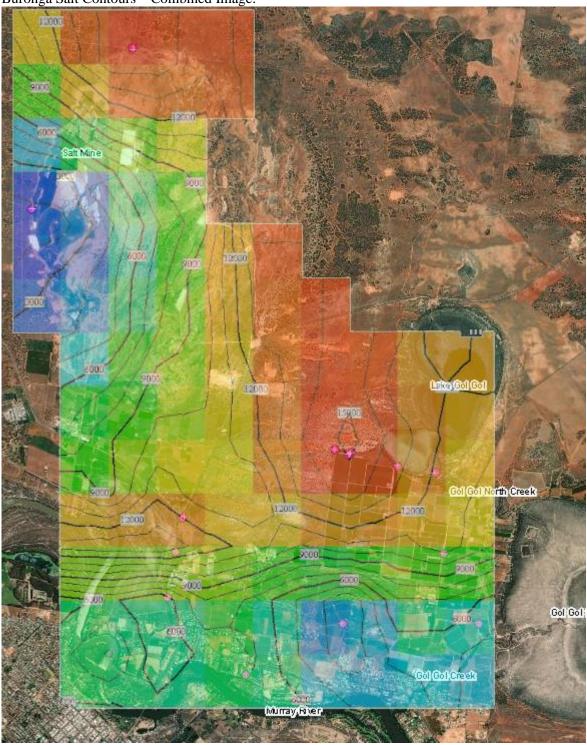
	2021/22 - 20	020/21 differe	nce (ha)
	<2M	2-4M	>4M
Buronga	0	30	-30
Coomealla	0	75	-75
Curlwaa	0	-5	5
	2020/21 - 20	019/20 differe	nce (ha)
	2020/21 - 2 0 <2M	2-4M	nce (ha) >4M
Buronga			_ ` `
Buronga Coomealla			>4M

	2021/22 - 20	010/11 differe	nce (ha)
	<2M	2-4M	>4M
Buronga	-3.2	46.25	-43.05
Coomealla	-473.55	-129.28	602.83
Curlwaa	0	-54.91	54.91
	2020/21 - 20	010/11 differe	nce (ha)
	<2M	2-4M	>4M
Buronga	-3.2	16.25	-13.05
Coomealla	-473.55	-204.28	677.83
Curlwaa	0	-49.91	49.91

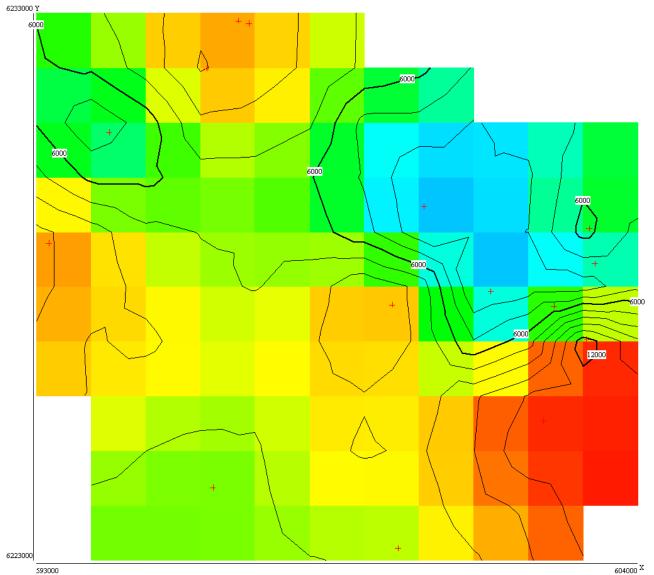
River has remained at normal level and low rainfall has not charged the water table. Water table appears to have dropped slightly in all areas. 2010/11 has been used as a significant historical year; up until August 2010 the prior year was close to average rainfall, followed by the wettest year ever. Groundwater monitoring and SIS review made an observation that significant rainfall changes the groundwater temporarily; below are monthly rainfall figures covering this monitoring period.

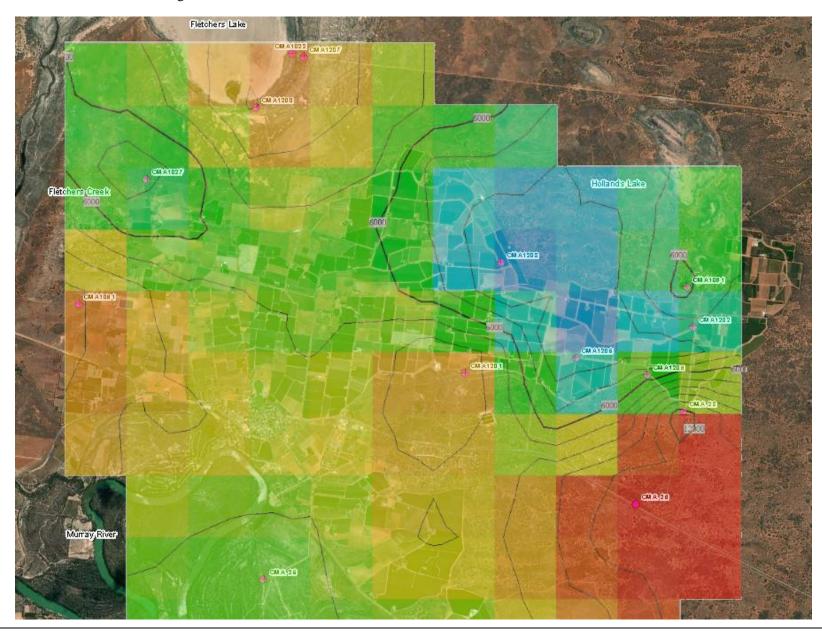

Monthly rainfall BOM – Mildura Airport:

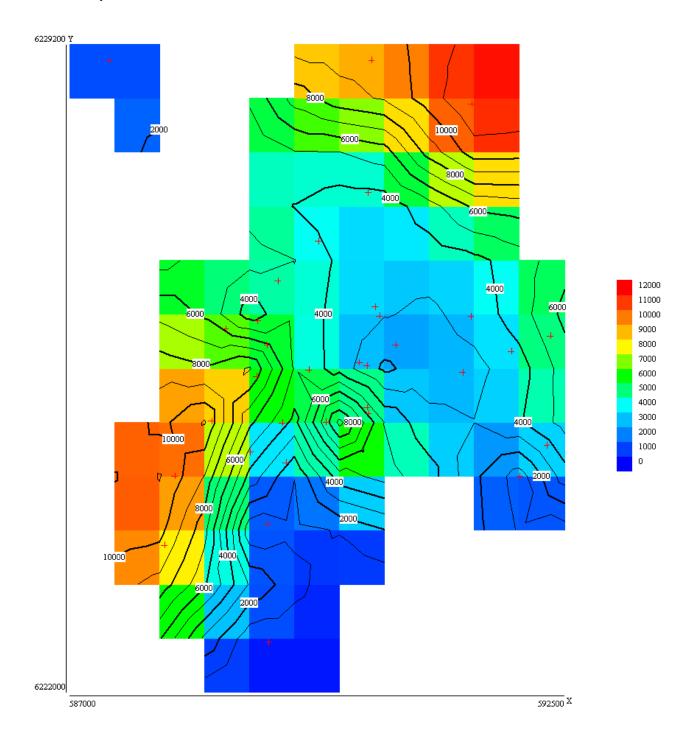
wionung ra	iiiiaii D	OIVI .	viiiuui	La Link	JUI 1.										
Season	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Total	Total 2 years	Total 3 years
2008/09	19.6	34.2	2.0	3.0	42.6	34.8	0.8	0.0	24.0	21.8	9.2	37.0	229.0	379.8	574.4
2009/10	11.8	8.2	30.4	10.8	65.6	13.2	8.4	19.8	35.8	18.8	51.2	14.6	288.6	517.6	668.4
2010/11	26.4	29.2	56.6	92.2	110.2	146.8	127.0	183.2	119.8	11.8	13.2	10.2	926.6	1,215.2	1,444.2
2011/12	15.4	20.8	7.2	27.6	43.4	61.8	12.6	36.6	64.2	4.0	2.6	8.0	304.2	1,230.8	1,519.4
2012/13	41.4	17.0	13.6	7.0	4.6	4.4	1.2	14.6	10.8	6.2	29.2	35.8	185.8	490.0	1,416.6
2013/14	14.8	10.4	18.8	14.4	2.4	57.8	0.6	67.2	29.2	58.4	22.8	6.4	303.2	489.0	793.2
2014/15	13.0	18.2	18.6	0.6	13.4	9.6	57.0	0.6	0.0	93.0	10.2	30.6	264.8	568.0	753.8
2015/16	11.6	12.0	13.0	3.8	6.0	1.6	68.2	0.2	0.4	3.0	43.4	18.2	181.4	446.2	749.4
2016/17	19.2	30.8	93.6	24.8	51.2	5.6	29.4	5.2	4.2	44.0	19.6	1.8	329.4	510.8	775.6
2017/18	4.0	34.0	4.0	23.0	55.4	45.0	3.4	0.2	2.2	1.8	17.4	19.2	209.6	539.0	720.4
2018/19	3.4	10.6	0.8	12.2	19.2	44.6	2.6	2.8	3.0	1.8	48.0	13.4	162.4	372.0	701.4
2019/20	10.4	5.4	12.0	0.0	13.8	2.6	2.8	11.0	27.6	48.6	48.1	8.4	190.7	353.1	562.7
2020/21	10.4	41.6	25.0	59.0	5.2	8.6	45.0	0.2	4.8	0.0	8.0	30.6	238.4	429.1	591.5
2021/22	32.2	11.8	14.8	15.2	56.6	1.6	86.2	6.0	14.8	49.0	52.8	17.0	358.0	596.4	787.1

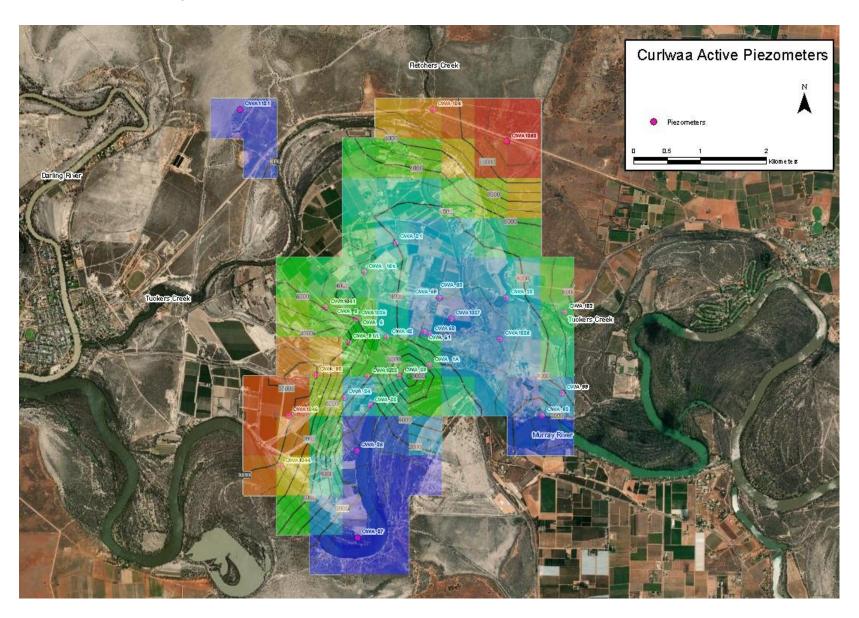

Attachment 2, p.2 – Condition 5

Groundwater salinity @ 0-2000, -5000,-10,000, -20,000,-30,000,-40,000 micro-Siemens/cm contours:


Buronga Salinity Contours (µ/Siemens):


Buronga Salt Contours – Combined Image:


Coomealla Salinity Contours:


Coomealla Salt Contours – Combined Image:

Curlwaa Salinity Contours:

Curlwaa Salt Contours – Combined Image:

Tabulated approximate salinity (microSiemens/cm) interval areas, within areas of operations boundary, relative to the previous and historical reference year:

Approximate areas at different EC of groundwater (ha)

				2021/22											
	0-2000	-5000	-10000	-20,000	-30,000	-40.000	Total op. area								
Buronga	0	90	190	377	0	0	657								
Coomealla	0	600	2881	700	0	0	4,181								
Curlwaa	0	1100	401	140	0	0	1,641								
	•			2020/21											
	0-2000	-5000	-10000	-20,000	-30,000	-40,000	Total op. area								
Buronga															
Coomealla 0 1200 2231 750 0 0 4,181															
Curlwaa	0	525	1046	70	0	0	1,641								
2019/20															
	0-2000	-5000	-10000	-20,000	-30,000	-40,000	Total op. area								
Buronga	0	90	297	270	0	0	657								
Coomealla	0	900	1400	1881	0	0	4,181								
Curlwaa	315	560	556	210	0	0	1,641								
				2010/11											
	0-2000	-5000	-10000	-20,000	-30,000	-40,000	Total op. area								
Buronga	7	20	154	141	148	188	657								
Coomealla	123	615	984	1312	943	205	4,181								
Curlwaa	43	756	194	432	130	86	1,641								

	2021/22 - 2020/21 difference (ha)														
	0-2000	-5000	-10000	-20,000	-30,000	-40,000									
Buronga	0	0	-20	20	0	0									
Coomealla															
Curlwaa															
	2020/21 - 2019/20 difference (ha)														
	0-2000	-5000	-10000	-20,000	-30,000	-40,000									
Buronga	0	0	-87	87	0	0									
Coomealla	0	300	831	-1131	0	0									
Curlwaa	-315	-35	490	-140	0	0									

		2020/21 -	2010/11 diffe	rence (ha)		
	0-2000	-5000	-10000	-20,000	-30,000	-40,000
Buronga	-7	70	36	236	-148	-188
Coomealla	-123	-15	1897	-612	-943	-205
Curlwaa	-43	344	207	-292	-130	-86

Attachment 2, p.2 – Condition 6.

It is unknown whether there are alternative presentation formats approved by the minister, therefore presentation is as close as possible to requested.

Attachment 2, p.3

Groundwater Control bores (Tubewells) Details

The tubewells have been mainly inoperative due to low groundwater levels, only maintenance runs have been carried out, Knipes tubewell has been inoperative 2021/22, this has been fixed in 2022/23:

District Work/Site I	dentifier	Curlwaa CWA 1									Location Coordinate	Details s (WGS84)		Type Dimension	ns	Submersibl 100mm	e Pumps	
Name		Tubewell F	ump Statio	on												X- Section	= 0.01m ²	
Representin	g discharg	Discharge t	to Fletchers	Creek							E		N	Capacity		2 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site \	/isits
Volume (MI	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0 ML	0.0	0.0	0.0	Flow	No Flow
Salt Load (0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0 T	0.0	0.0	0.0	FIOW	INO FIOW
Average E(NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0		0	0	NA	0	52
O:\DO Files	\001 Drain	age\000 Dra	inage Figure	es\Drainage	2021-22\[V	/MIL Draina	ge Curlwaa	2021-22.xls	EPA B3-13	James Hw	y No4						4	9

District Work/Site Identifie Name	r	Curlwaa CW 2 Tubewell	Pump No	o.1 - Knipe	es.							n Details s (WGS84)		Type Dimensions		Submersit 100mm X- Section		
Representing disc	harge	Discharge	•							1	E	1	N	Capacity		0.5 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	Flow	No Flow
Salt Load (T)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00 T	0.0	0.0	0.0	FIOW	NO FIOW
Average EC	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		0	0	NA	0	0
O:\DO Files\001 D	rainage\000	Drainage Figu	ures\Drainag	e 2021-22\[V	VML Drainage	e Curlw aa 20	21-22.xls]Tu	bew ell No1-l	Knipes								5	52

District Work/Site Identifier	r	Curlwaa CW 3										n Details s (WGS84)		Type Dimensions		Submersit 100mm	ole Pump	
Name Representing disc	harge	Tubewell Discharge	Pump No s to Tubew							E	≣	ı	N	Capacity		X- Section 0.5 ML/D	= 0.01m ²	
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.00	0.0	0.00	0.02	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0 ML	0.0	0.0	0.0	Flow	No Flow
Salt Load (T)	0.0	0.0	0.000	0.002	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00 T	0.0	0.0	0.0	FIOW	INO FIOW
Average EC	NA	NA	NA	135	NA	NA	NA	NA	NA	NA	NA	NA		135	135	347	1	51
O:\DO Files\001 Dr	rainage\000	Drainage Figu	ures\Drainag	2021-22\[W	MIL Drainage	e Curlw aa 20	21-22.xls]Tu	ibew ell No1-l	Knipes								Ę	52

District Work/Site Identifier		Curlwaa CW 4										n Details s (WGS84)		Type Dimensions		Submersil 100mm	ole Pump		
Name		Tubewell	Pump No	.3 - Olive	Lane											X- Section	$= 0.01 \text{m}^2$		
Representing disc	harge	Discharge	s to Tubew	ell Station						E		1	N	Capacity		0.5 ML/D	.5 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits	
Volume (ML)	0.00	0.0	0.00	0.0	0.0	0.0	0.0	0.02	0.00	0.0	0.0	0.0	0.1 ML	0.0	0.0	0.0	Flow	No Flow	
Salt Load (T)	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.002	0.0	0.0	0.0	0.0	0.00 T	0.0	0.0	0.0	FIOW	INO FIOW	
Average EC	NA	NA	NA	135	NA	NA	NA	135	NA	NA	NA	NA		135	135	135	2	50	
O:\DO Files\001 Dr	ainage\000	Drainage Figu	ıres\Drainage	e 2021-22\[W	MIL Drainage	e Curlw aa 20	21-22.xls]Tu	bew ell No1-l	Knipes					52					

District Work/Site Identifier		Curlwaa CW 5										n Details s (WGS84)		Type Dimensions		Submersit 100mm	ole Pump	
Name		Tubewell	Pump No	.4 - Rice's												X- Section	$= 0.01 \text{m}^2$	
Representing discl	harge	Discharge	s to Tubew	ell Station						5904	120E	6226	103N	Capacity		0.5 ML/D		
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Totals	Max	Min	Av.	Site	Visits
Volume (ML)	0.00	0.0	0.00	0.02	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.1 ML	0.04	0.00	0.0	Flow	No Flow
Salt Load (T)	0.0	0.0	0.000	0.002	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01 T	0.003	0.0	0.0	FIOW	INO FIOW
Average EC	NA	NA	NA	135	NA	NA	NA	135	NA	NA	NA	NA		135	135	135	2	50
O:\DO Files\001 Dr	ainage\000 [Drainage Figur	res\Drainage	2021-22\[WN	/IL Drainage	Curlw aa 202	21-22.xls]Tut	ew ell No1-K	nipes									52

Quality Assurance for Monitoring & Reporting

Condition 3.

All monitoring and reporting are carried out in accordance with the DPI NSW publication "Salinity Training Manual" (2014).

Presentation of Data

Condition 4.

There has been no written request from the minister for presentation of any primary monitoring data or other material.

Environment Protection and Management Requirements

Discharge of Noxious Aquatic weeds

Condition 5.

WMI did not discharge any noxious aquatic weeds.

Discharge of Blue-Green Algae

Condition 6.

WMI pumps directly from the River Murray and has a fully pipelined system. Blue green algae monitoring on the river is performed by external parties and reported to stakeholders, including WMI. No discharge of Blue-Green Algae from WMI systems.

Basin Salinity Management Strategy

Condition 7.

There were no practices undertaken to increase the salinity debit, however it is evident that WMI has improved salinity management over the long term.
